Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array

Abstract

Abstract: We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments. Hübers, "Sub-megahertz frequency stabilization of a terahertz quantum cascade laser to a molecular absorption line," Appl. Phys. Lett. 96(7), 071112 (2010). ©2010 Optical Society of Americ

    Similar works