DeSC: Decoupled Supply-Compute Communication Management for Heterogeneous Architectures

Abstract

ABSTRACT Today's computers employ significant heterogeneity to meet performance targets at manageable power. In adopting increased compute specialization, however, the relative amount of time spent on memory or communication latency has increased. System and software optimizations for memory and communication often come at the costs of increased complexity and reduced portability. We propose Decoupled Supply-Compute (DeSC) as a way to attack memory bottlenecks automatically, while maintaining good portability and low complexity. Drawing from Decoupled Access Execute (DAE) approaches, our work updates and expands on these techniques with increased specialization and automatic compiler support. Across the evaluated workloads, DeSC o↵ers an average of 2.04x speedup over baseline (on homogeneous CMPs) and 1.56x speedup when a DeSC data supplier feeds data to a hardware accelerator. Achieving performance very close to what a perfect cache hierarchy would o↵er, DeSC o↵ers the performance gains of specialized communication acceleration while maintaining useful generality across platforms

    Similar works