Biochemistry and Molecular Biology b2-Adrenergic Receptor Antagonism Attenuates CNV Through Inhibition of VEGF and IL-6 Expression

Abstract

Citation: Lavine JA, Farnoodian M, Wang S, et al. b2-adrenergic receptor antagonism attenuates CNV through inhibition of VEGF and IL-6 expression. Invest Ophthalmol Vis Sci. 2017;58:299-308. DOI:10.1167/ iovs.16-20204 PURPOSE. The role of b-adrenergic receptor (AR) signaling in neovascular ocular diseases has recently emerged. We have previously reported that intraperitoneal propranolol inhibits choroidal neovascularization (CNV) in vivo and b2-AR blockade reduces vascular endothelial growth factor (VEGF) expression in mouse retinal pigment epithelium and choroidal endothelial cells in culture. Here we tested the hypothesis that the b2-AR regulates CNV through modulation of VEGF and inflammatory cytokine expression. METHODS. Mice were subjected to laser burns, inducing CNV, and were treated with an intravitreal b2-AR antagonist. After 3 and 5 days, total eye interleukin-6 (IL-6) and VEGF protein levels were measured, respectively. After 14 days, CNV was measured on choroidalscleral flatmounts. The effects of b-AR signaling on VEGF and IL-6 expression were investigated in various mouse retinal and human RPE cells by using specific b-AR agonists and antagonists. RESULTS. b2-Adrenergic receptor signaling increased Vegf mRNA expression by approximately 3-to 4-fold in mouse retinal microglia and pericytes in culture. b2-Adrenergic receptor signaling upregulated IL-6 mRNA expression between 10-and 60-fold in mouse retinal microglia, pericytes, RPE, and choroidal endothelial cells in culture. Intravitreal injection of b2-AR antagonist ICI 118,551 reduced CNV by 35% and decreased IL-6 protein levels by approximately 50%. In primary human RPE cells, b2-AR activation also stimulated VEGF and IL-6 mRNA expression by 2-and 10-fold, respectively. CONCLUSIONS. Anti-VEGF therapy for CNV is highly effective; however, some patients are resistant to therapy while others undergo repeated, frequent treatments. b2-Adrenergic receptor signaling is a potential therapeutic target because of its angiogenic and inflammatory properties

    Similar works