21.9-Gb/s PDM-OFDM Transmission With 2-b/s/Hz Spectral Efficiency Over 1000 km of SSMF

Abstract

Abstract-We discuss optical multi-band orthogonal frequency division multiplexing (OFDM) and show that by using multiple parallel OFDM bands, the required bandwidth of the digital-to-analogue/ analogue-to-digital converters and the required cyclic prefix can significantly be reduced. With the help of four OFDM bands and polarization division multiplexing (PDM) we report continuously detectable transmission of 10 121.9-Gb/s (112.6-Gb/s without OFDM overhead) at 50-GHz channel spacing over 1,000-km standard single mode fiber (SSMF) without any inline dispersion compensation. In this experiment 8 QAM subcarrier modulation is used which confines the spectrum of the 121.9 Gb/s PDM-OFDM signal within a 22.8 GHz optical bandwidth. Moreover, we propose a digital signal processing method to reduce the matching requirements for the wideband transmitter IQ mixer structures required for PDM-OFDM. Index Terms-Chromatic dispersion compensation, fiber-optic transmission systems, long-haul transmission, orthogonal frequency-division multiplexing (OFDM)

    Similar works