Combined Matrix-Isolation Infrared and Theoretical DFT and ab Initio Study of the Nonionized Valine Conformers

Abstract

We present results of the first experimental observation of the nonionized natural amino acid valine. The study has employed the matrix-isolation IR spectroscopy and the density functional theory (DFT) and ab initio calculations. In the calculations geometries of nine low-energy valine conformers were optimized using the DFT method with the B3LYP parametrization and the 6-31++G** basis set. Additionally, the relative energies of the conformers were calculated at the MP2/6-31++G** level. The harmonic frequencies and IR intensities were calculated for all the minima found. These data were used to separate and assign the bands of the valine conformers in the experimental spectra. We found that two valine conformers are present in the Ar matrix: one with a bifurcated NH 2 ‚‚‚OdC H-bond (conformer Ia) and one with a N‚‚‚H-O H-bond (conformer IIa). A trace amount of a third valine conformer with NH 2 ‚‚‚O-C H-bond (conformer IIIb) was also detected. The conformational composition of the matrix-deposited nonionized valine was determined on the basis of observed and predicted IR intensities of the bands of different conformers. The composition is ∼94% of conformer Ia, ∼5% of conformer IIa, and less than 2% of conformer IIIb. The presence of three valine conformers in the Ar matrix results in broadening and/or in multiplex structures of some bands in the valine IR spectrum. Common features in the IR spectra of some nonionized natural aliphatic amino acids are discussed

    Similar works