FEDSM2006-98559 HIGH-ORDER COMPUTATIONAL TECHNIQUES FOR UNSTEADY VORTICAL FLOWS OVER DELTA WINGS

Abstract

ABSTRACT Introduction Delta-like wings are a common design feature of many aircraft including currently proposed unmanned combat air vehicles, micro air vehicles and high-performance fighter aircraft. The complex flows over these types of aircraft when maneuvering involve massive separation and place numerous demands on a computational method. The flowfields are inherently unsteady and three-dimensional. Because of the abrupt nature of the onset of vortex breakdown and the extreme sensitivity of performance coefficients (e.g., pitching moment coefficient, rolling moment coefficient) to the proper representation and location of breakdown, a high degree of accuracy is required to satisfactorily compute these challenging unsteady flowfields. In order to effectively predict these types of highly nonlinear flows a computational approach that solves the unsteady, threedimensional Navier-Stokes equations using a well-validated and robust high-order solve

    Similar works

    Full text

    thumbnail-image

    Available Versions