Movement of N from decomposing earthworm tissue to soil microbial and plant N pools

Abstract

Abstract A microcosm experiment was made to determine the fate of nitrogen released from 15 N-labelled decomposing earthworms (Lumbricus terrestris) in soil in the presence or absence of ryegrass seedlings (Lolium perenne). Earthworm tissue (2.0% 15 N atom enriched) was added to each microcosm. Nitrogen movement from earthworm tissue to soil N [mineral N (NH 4 -N + NO 3 -N), dissolved organic N (DON) and organic N], microbial biomass N and plant shoot N pools was determined by destructive sampling at 1, 2, 4, 8 and 16 d. Earthworm tissues decomposed rapidly, and no tissue was visible after 4 d. Initially in pots without plants, most of the N from earthworm tissue was found in the organic N pool, however, as much as 55% of the N from decomposing earthworm tissue was incorporated into microbial biomass after 2 d. Much less of the N from earthworm tissue was transformed into DON and mineral N forms after 2 d. The DON and mineral N pools contained 13±18% and 4±7% of the N from earthworm tissue, respectively, from d 2 to 16. By the end of the experiment, N from earthworm tissue in the microbial biomass N pool declined to 29% while the amount of N from earthworm tissue in the organic N pool increased to 49%. The increase in the organic N may have resulted from the production of new organic compounds such as microbial by-products. In pots with plants, N from earthworm tissue was rapidly incorporated into microbial biomass, and by d 2, the microbial biomass N pool contained 40% of the N from earthworm tissue. Mineral N, DON and microbial biomass N concentrations were lower in pots with ryegrass seedlings compared to pots without plants, and after d 2 declined to almost undetectable amounts because of rapid plant uptake. Between 42±52% of the N from earthworm tissue was found in the organic N pool from d 1 to 8, and then declined to 19% by d 16. After 16 d, over 70% of the N added as earthworm tissue was incorporated into plant shoot biomass. Our results demonstrate that the movement of N from dead earthworm tissue into microbial biomass was extremely rapid, and in pots without plants, much of this N was transformed into organic N forms, while in pots with ryegrass, most of the N from earthworm tissue accumulated in ryegrass shoots.

    Similar works