High resolution radar rainfall for urban pluvial flood management: Lessons learnt from 10 pilots in North-West Europe within the RainGain project

Abstract

ABSTRACT Precipitation and catchment information needs to be available at high resolution to reliably predict hydrological response and potential flooding in urban catchments. While recent advances have been made in weather radar technology and availability of DTM for urban flood modelling, the question is whether these are sufficient to provide reliable predictions for urban pluvial flood control. The RainGain project (EU-Interreg IVB NWE) brings together radar technologists and hydrologists to explore a variety of rainfall sensors, rainfall data processing techniques and hydrodynamic models for the purpose of fine-scale representation of urban hydrodynamic response. High resolution rainfall and hydrodynamic modelling techniques are implemented at 10 different pilot locations under real-life conditions. In this paper, the pilot locations, configurations of rainfall sensors (including X-Band and C-Band radars, rain gauges and disdrometers) and modelling approaches adopted within the RainGain project are introduced. Initial results are presented of hydrodynamic modelling using high resolution precipitation inputs from dual-polarisation X-band radar, followed by a discussion of differences in hydrodynamic response behaviour between the pilots

    Similar works