CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
2-chloro-s-triazine herbicides induce aromatase (CYP19) activity in H295R human adrenocortical carcinoma cells: a novel mechanism for estrogenicity?
Authors
J Thomas Sanderson
John P Giesy
Martin Van Den Berg
Willem Seinen
Publication date
1 January 2000
Publisher
Abstract
There is increasing concern that certain chemicals in the environment can cause endocrine disruption in exposed humans and wildlife. Investigations of potential effects on endocrine function have been limited mainly to interactions with hormone receptors. A need exists for the development of alternate in vitro methods to evaluate chemicals for their potential to disturb various endocrine functions via other mechanisms. Our laboratory is using the human H295R adrenocortical carcinoma cell line to examine chemicals for their potential to interfere with the activity and/or expression of several key cytochrome P450 (CYP) enzymes involved in the biosynthesis of steroid hormones. In this report we demonstrated that the commonly used 2-chloro-s-triazine herbicides atrazine, simazine, and propazine dose-dependently (0 -30 M) induced aromatase (CYP19) activity to an apparent maximum of about 2.5-fold in H295R cells. Basal-and triazine-induced aromatase activity was completely inhibited by the irreversible aromatase inhibitor 4-hydroxyandrostenedione (100 M). The triazines increased levels of CYP19 messenger ribonucleic acid (mRNA) between 1.5-and 2-fold. The time-response profile of the induction of aromatase activity and CYP19 mRNA by the triazines was similar to that by 8-bromo-cyclic adenosine monophosphate, a known stimulant of the protein kinase-A pathway that mediates the induction of aromatase in these cells. The observed induction of aromatase, the rate-limiting enzyme in the conversion of androgens to estrogens, may be an underlying explanation for some of the reported hormonal disrupting and tumor promoting properties of these herbicides in vivo. Key Words: aromatase; atrazine; simazine; propazine; triazines; induction; adrenocortical carcinoma; CYP19; mRNA. In recent years, there has been growing concern that certain environmental contaminants and commercial products have the potential to disturb endocrine functions in exposed humans and wildlife. Disturbances by these "endocrine disrupters" may lead to impaired reproductive capacity and other toxicities related to sexual differentiation, growth, and development. Current research has focused on potential interactions with the sex hormone receptors, particularly the estrogen receptor The H295 and H295R (a subpopulation of H295 that forms a monolayer in culture) human adrenocortical carcinoma cell lines have been characterized in detail and shown to express most of the key enzymes necessary for steroidogenesis The triazine family of broad-leaved herbicides has been used increasingly since the 1960s to control weeds, particularly in maize crops, in North America and Europe. The estimated use 1 To whom correspondence should be addressed. Fax: 011-31-30 -253-5077. E-mail:
[email protected]
. TOXICOLOGICAL SCIENCES 54, 121-127 (2000) Copyright © 2000 by the Society of Toxicology 121 of atrazine in the United States was almost 35,000 tons in 1993 (U.S. MATERIALS AND METHODS Cell culture conditions. H295R cells were obtained from the American Type Culture Collection (ATCC # CRL-2128) and grown in 75-cm 2 flasks (Greiner, Germany) under culture conditions published previously Isolation and amplification of RNA. RNA was isolated using the RNA Insta-Pure System (Eurogentec, Belgium) according to the manufacturerЈs instructions and stored at -70°C. RT-PCRs were performed using the Access RT-PCR System (Promega, U.S.). Northern blotting was not considered as an option because of the low basal expression of aromatase, which could not be detected by other investigators using this technique Aromatase assay. The catalytic activity of aromatase was determined based on the method of RESULT
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
CiteSeerX
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:CiteSeerX.psu:10.1.1.1039....
Last time updated on 07/12/2020