Abstract Acute pancreatitis is an autodigestive disease, in which the pancreatic tissue is damaged by the digestive enzymes produced by the acinar cells. Among the tissues in the mammalian body, pancreas has the highest concentration of the natural polyamine, spermidine. We have found that pancreas is very sensitive to acute decreases in the concentrations of the higher polyamines, spermidine and spermine. Activation of polyamine catabolism in transgenic rats overexpressing SSAT (spermidine/spermine-N 1 -acetyltransferase) in the pancreas leads to rapid depletion of these polyamines and to acute necrotizing pancreatitis. Replacement of the natural polyamines with methylated polyamine analogues before the induction of acute pancreatitis prevents the development of the disease. As premature trypsinogen activation is a common, early event leading to tissue injury in acute pancreatitis in human and in experimental animal models, we studied its role in polyamine catabolism-induced pancreatitis. Cathepsin B, a lysosomal hydrolase mediating trypsinogen activation, was activated just 2 h after induction of SSAT. Pre-treatment of the rats with bismethylspermine prevented pancreatic cathepsin B activation. Analysis of tissue ultrastructure by transmission electron microscopy revealed early dilatation of rough endoplasmic reticulum, probable disturbance of zymogen packaging, appearance of autophagosomes and later disruption of intracellular membranes and organelles. Based on these results, we suggest that rapid eradication of polyamines from cellular structures leads to premature zymogen activation and autodigestion of acinar cells