Mechanomics and physicomics in gravisensing

Abstract

Link to publication General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract Sensing gravity by 'non-specialized' cells is still puzzling. We don't know where or by which mechanism such cells sense gravity. These questions in 'gravisensing' are not much different from questions in general mechanobiology. Numerous studies have been reported in this field in the last couple of decades. What are the mechanical properties of a cell? Are there differences in mechanical properties between cell types and if so why? How are forces perceived and transduced to a meaningful biological event. Novel techniques such as optical and magnetic tweezers, atomic force microscopy, magnetophoresis and computer modeling make the field of mechanosensing or perhaps physicomics accessible. A similar approach should also be applied for gravity-related research. This paper addresses the current techniques used in mechanosensing and exemplifies how a cell could sense the relatively weak force of gravity

    Similar works