Efficient molecular organic light-emitting diodes based on silole derivatives

Abstract

Abstract We report the performance of molecular organic light-emitting diodes (MOLEDs) using silole derivatives as emissive and electron transport materials. Two siloles, namely 2,5-di-(3-biphenyl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PPSPP) and 1,2-bis(1-methyl-2,3,4,5,-tetraphenylsilacyclopentadienyl)ethane (2PSP), with high PL quantum yields of 94% and 85%, respectively, were used as emissive materials. Another silole, namely 2,5-bis-(2',2''-bipyridin-6-yl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), was used as the electron transport material. MOLEDs using these two siloles and NPB as the hole transport material show a low operating voltage of approximately 4.5 V at a luminance of 100 cd/m 2 and high external electroluminescence (EL) quantum efficiencies of 3.4% and 3.8%, respectively, at 100 A/m 2 . MOLEDs based on PPSPP exhibit a red-shifted EL spectrum which is assigned to an exciplex formed at the PPSPP:NPB interface. Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

    Similar works