Sliding Mode Dirichlet Boundary Stabilization of Uncertain Parabolic PDE Systems With Spatially Varying Coefficients

Abstract

Abstract-We consider the robust boundary stabilization problem of an unstable parabolic partial differential equation (PDE) system with uncertainties entering from both the spatially-dependent parameters and from the boundary conditions. The parabolic PDE is transformed through the Volterra integral into a damped heat equation with uncertainties, which contains the matched part (the boundary disturbance) and the mismatched part (the parameter variations). In this new coordinates, an infinite-dimensional sliding manifold that ensures system stability is constructed. For the sliding mode boundary control law to satisfy the reaching condition, an adaptive switching gain is used to cope with the above uncertainties, whose bound is unknown

    Similar works