Abstract: A real-time sketch and fuzzy logic based prototype system for conceptual design has been developed. This system comprises four phases. In the ® rst one, the system accepts the input of online free-hand sketches, and segments them into meaningful parts by using fuzzy knowledge to detect corners and in¯ection points on the sketched curves. The fuzzy knowledge is applied to capture user' s drawing intention in terms of sketching position, direction, speed and acceleration. During the second phase, each segmented subpart (curve) can be classi® ed and identi® ed as one of the following two-dimensional primitives: straight lines, circles, circular arcs, ellipses, elliptical arcs or B-spline curves. Then, two-dimensional topology information (connectivity, unitary constraints and pairwise constraints) is extracted dynamically from the identi® ed two-dimensional primitives. From the extracted information, more accurate two-dimensional geometry can be built up by a two-dimensional geometric constraint solver. The two-dimensional topology and geometry information is then employed to further interpretation of a three-dimensional geometry. The system can not only accept sketched input but also users' interactive input of two-and three-dimensional primitives. This makes it friendly and easier to use, in comparison with`sketched input only' or interactive input only' systems. Finally, examples are given to illustrate the system