Using Automated Reasoning Tools in GeoGebra in the Teaching and Learning of Proving in Geometry

Abstract

ABSTRACT: This document introduces, describes and exemplifies the technical features of some recently implemented automated reasoning tools in the dynamic mathematics software GeoGebra. The new tools are based on symbolic computation algorithms, allowing the automatic and rigorous proving and discovery of theorems on constructed geometric figures. Some examples of the use in the classroom of such commands are provided, including one describing how intuitive handling of GeoGebra automated reasoning tools may result in unexpected outputs. In all cases the emphasis is made in the potential utility of these tools as a guiding stick to foster student activities (exploration, reasoning) in the learning of elementary geometry. Moreover, a collection of appendices describing other, more sophisticated, low-level GeoGebra tools (Prove, ProveDetails), as well as instructions on how to obtain the translation of GeoGebra commands into other languages, and details about debugging, are included.Work partially supported by the grant MTM2017-88796-P from the Spanish MINECO and the ERDF (European Regional Development Fund)

    Similar works