Studentská vědecká konference je pořádána s podporou prostředků na specifický vysokoškolský výzkum SVK1-2018-024.Vanadium dioxide (VO2) is a technologically important thin film material of a high current world wide interest due to its reversible first-order thermochromic transition relatively near room temperature (approximately 68°C). Magnetron sputtering is probably the most important preparation technique of VO2 films, and numerous deposition pathways have been reported in recent years. The research in this area is focused on (at least) the following three challenges. First, doping of VO2 by other metals in order to decrease the transition temperature (Ttr) from 68 °C (bulk materials) or e.g. 50 °C (thin films) to the room temperature. Second, decreasing the deposition temperature (Tdep) of crystalline VO2 at least below 300 °C, ideally without any substrate bias and without any crystalline interlayer, in order (i) to facilitate the large-scale production by reducing the energy consumption and minimizing problems with temperature uniformity over large substrate surfaces, (ii) to limit the diffusion of harmful elements from substrates such as soda-lime glass and (iii) to allow deposition on temperaturesensitive plastic substrates. Third, improving the luminous transmittance (Tlum) and the modulation of the solar transmittance (Tsol) of the coatings by antireflection (AR) layers. (J. Houška et al. (2017)