133,686 research outputs found
Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives.
BackgroundThe capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development's Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global 'hot spot' regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program.MethodsA survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife.ResultsBoth stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of project scientists).ConclusionsA One Health approach to capacity building applied at local and global scales will have the greatest impact on improving zoonotic pathogen surveillance in wildlife. This approach will involve increasing communication and cooperation across ministries and sectors so that experts and stakeholders work together to identify and mitigate surveillance gaps. Over time, this transdisciplinary approach to capacity building will help overcome existing challenges and promote efficient targeting of high risk interfaces for zoonotic pathogen transmission
Zoonosis emergence linked to agricultural intensification and environmental change
A systematic review was conducted by a multidisciplinary team to analyze qualitatively best available scientific evidence on the effect of agricultural intensification and environmental changes on the risk of zoonoses for which there are epidemiological interactions between wildlife and livestock. The study found several examples in which agricultural intensification and/or environmental change were associated with an increased risk of zoonotic disease emergence, driven by the impact of an expanding human population and changing human behavior on the environment. We conclude that the rate of future zoonotic disease emergence or reemergence will be closely linked to the evolution of the agriculture–environment nexus. However, available research inadequately addresses the complexity and interrelatedness of environmental, biological, economic, and social dimensions of zoonotic pathogen emergence, which significantly limits our ability to predict, prevent, and respond to zoonotic disease emergence
Determinants of Childhood Zoonotic Enteric Infections in a Semirural Community of Quito, Ecuador.
Domestic animals in the household environment have the potential to affect a child's carriage of zoonotic enteric pathogens and risk of diarrhea. This study examines the risk factors associated with pediatric diarrhea and carriage of zoonotic enteric pathogens among children living in communities where smallholder livestock production is prevalent. We conducted an observational study of children younger than 5 years that included the analysis of child (n = 306) and animal (n = 480) fecal samples for Campylobacter spp., atypical enteropathogenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella spp., Yersinia spp., Cryptosporidium parvum, and Giardia lamblia. Among these seven pathogens, Giardia was the most commonly identified pathogen among children and animals in the same household, most of which was found in child-dog pairs. Campylobacter spp. was also relatively common within households, particularly among child-chicken and child-guinea pig pairs. We used multivariable Poisson regression models to assess risk factors associated with a child being positive for at least one zoonotic enteric pathogen or having diarrhea during the last week. Children who interacted with domestic animals-a behavior reported by nearly three-quarters of households owning animals-were at an increased risk of colonization with at least one zoonotic enteric pathogen (prevalence ratio [PR] = 1.56, 95% CI: 1.00-2.42). The risk of diarrhea in the last seven days was elevated but not statistically significant (PR = 2.27, CI: 0.91, 5.67). Interventions that aim to reduce pediatric exposures to enteric pathogens will likely need to be incorporated with approaches that remove animal fecal contamination from the domestic environment and encourage behavior change aimed at reducing children's contact with animal feces through diverse exposure pathways
Prediction and prevention of the next pandemic zoonosis.
Most pandemics--eg, HIV/AIDS, severe acute respiratory syndrome, pandemic influenza--originate in animals, are caused by viruses, and are driven to emerge by ecological, behavioural, or socioeconomic changes. Despite their substantial effects on global public health and growing understanding of the process by which they emerge, no pandemic has been predicted before infecting human beings. We review what is known about the pathogens that emerge, the hosts that they originate in, and the factors that drive their emergence. We discuss challenges to their control and new efforts to predict pandemics, target surveillance to the most crucial interfaces, and identify prevention strategies. New mathematical modelling, diagnostic, communications, and informatics technologies can identify and report hitherto unknown microbes in other species, and thus new risk assessment approaches are needed to identify microbes most likely to cause human disease. We lay out a series of research and surveillance opportunities and goals that could help to overcome these challenges and move the global pandemic strategy from response to pre-emption
One Health – an Ecological and Evolutionary Framework for tackling Neglected Zoonotic Diseases
Understanding the complex population biology and transmission ecology of multihost parasites has been declared as one of the major challenges of biomedical sciences for the 21st century and the Neglected Zoonotic Diseases (NZDs) are perhaps the most neglected of all the Neglected Tropical Diseases (NTDs). Here we consider how multihost parasite transmission and evolutionary dynamics may affect the success of human and animal disease control programmes, particularly neglected diseases of the developing world. We review the different types of zoonotic interactions that occur, both ecological and evolutionary, their potential relevance for current human control activities, and make suggestions for the development of an empirical evidence base and theoretical framework to better understand and predict the outcome of such interactions. In particular, we consider whether preventive chemotherapy, the current mainstay of NTD control, can be successful without a One Health approach. Transmission within and between animal reservoirs and humans can have important ecological and evolutionary consequences, driving the evolution and establishment of drug resistance, as well as providing selective pressures for spill‐over, host switching, hybridizations and introgressions between animal and human parasites. Our aim here is to highlight the importance of both elucidating disease ecology, including identifying key hosts and tailoring control effort accordingly, and understanding parasite evolution, such as precisely how infectious agents may respond and adapt to anthropogenic change. Both elements are essential if we are to alleviate disease risks from NZDs in humans, domestic animals and wildlife
Fighting Zoonotic, Rabies and Public Health in Colonial India
Rabies is the oldest Zoonotic diseases in the world and one of the most important Zoonotic diseases in India. It was one of the most difficult problems confronted both by the medical and veterinary authorities in colonial India. The disease is transmitted from animal to animal and from animal to man through saliva. More than 90 per cent of cases of human rabies are transmitted by dogs which was a major concern of public health. A few British officials and soldiers were bitten by dogs during the colonial period. As a result, they suffered from rabies. As ownerless dogs were infested all through the country, the disease prevailed largely at that time. Gradually, rabies became a problem to the colonial Government. Louis Pasteur obtained his first success against rabies through vaccination in 1885. At that time, Dr. Lingard, Bacteriologist, had proposed to introduce a system of anti-rabies vaccination in the Bacteriological laboratory at Poona. A similar proposal was also submitted by J.H.B. Hallen, a civil Surgeon in 1890. Later, five institutes were established in India for anti-rabies treatment. Gradually rabies patients were treated at pasture institute. Thus, this paper examines impact of rabies, treatment and veterinary public health policy in colonial India. The great Zoonotic waves of rabies that suffered public health in colonial India are also focus of this paper
- …
