7,404 research outputs found

    High fidelity sorting of remarkably similar components via metal-mediated assembly.

    Get PDF
    Subtle differences in ligand coordination angle and rigidity lead to high fidelity sorting between individual components displaying identical coordination motifs upon metal-mediated self-assembly. Narcissistic self-sorting can be achieved between highly similar ligands that vary minimally in rigidity and internal coordination angle upon combination with Fe(ii) ions and 2-formylpyridine. Selective, sequential cage formation can be precisely controlled in a single flask from a mix of three different core ligands (and 33 total components) differing only in the hybridization of one group that is uninvolved in the metal coordination process

    Design, synthesis and biological evaluation of 1,3-dihydroxyxanthone derivatives: Effective agents against acetylcholinesterase

    Get PDF
    The present work concerns the rational design and development of new inhibitors of acetylcholinesterase (AChE) based on the privileged xanthone scaffold. In order to understand and rationalize the mode of action of these target structures a theoretical study was initially conducted. From the results of rational design, a new variety of amphiphilic xanthone derivatives were synthesized, structurally characterized and evaluated as potential anti-Alzheimer agents. The results showed that most of the synthesized compounds exhibited high AChE inhibitory activity at the micromolar range (IC50, 0.46–12.09 μM). The synthetic xanthone 11 showed the best inhibitory effect on AChE and a molecular modeling study revealed that 11 targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Therefore, this compound could be considered as a potential lead compound towards new drugs for the treatment of Alzheimer’s disease.Fil: Menéndez, Cintia Anabella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Biscussi, Brunella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Accordino, Sebastian Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Murray, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Gerbino, Darío César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Appignanesi, Gustavo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentin

    A TGA/FTIR and Mass Spectral Study on the Thermal Degradation of Bisphenol A Polycarbonate

    Get PDF
    The thermal degradation of polycarbonate under nitrogen was studied using TGA/FTIR, GC/MS and LC/MS as a function of mass loss. The gases evolved during degradation were inspected by in situ FTIR and then the evolved products were collected and analysed using FTIR, GC–MS and LC–MS. The structures of the evolved products are assigned on the basis of FTIR and GC/MS results. The main thermal degradation pathways follow chain scission of the isopropylidene linkage, and hydrolysis/alcoholysis and rearrangement of carbonate linkages. In the case of chain scission, it was proposed that methyl scission of isopropylidene occurs first, according to the bond dissociation energies. The presence of carbonate structures, 1,1′-bis(4-hydroxyl phenyl) ethane and bisphenol A in significant amounts, supports the view that chain scission and hydrolysis/alcoholysis are the main degradation pathways for the formation of the evolved products

    Diversity of secondary metabolites from Genus Artocarpus (Moraceae)

    Get PDF
    Abstrak. Hakim A. 2010. Keanekaragaman metabolit sekunder Genus Artocarpus (Moraceae). Nusantara Bioscience 2:146-156. Beberapa spesies dari genus Artocarpus (Moraceae) telah diteliti kandungan bahan alamnya. Metabolit sekunder yang berhasil diisolasi dari genus Artocarpus terdiri dari terpenoid, flavonoid, stilbenoid, arilbenzofuran, neolignan, dan adduct Diels-Alder. Kelompok flavonoid merupakan senyawa yang paling banyak ditemukan dari tumbuhan Artocarpus. Senyawa flavonoid yang telah berhasil diisolasi dari tumbuhan Artocarpus memiliki kerangka yang beragam seperti calkon, flavanon, flavan-3-ol, flavon sederhana, prenilflavon, oksepinoflavon, piranoflavon, dihidrobenzosanton, furanodihidrobenzosanton, piranodihidrobenzosanton, kuinonosanton, siklolopentenosanton, santonolid, dihidrosanton. Kata kunci: Artocarpus, Moraceae, flavonoid, Diels-Alder, metabolit sekunder

    Metabolic profile and root development of Hypericum perforatum L. in vitro roots under stress conditions due to chitosan treatment and culture time

    Get PDF
    The responses of Hypericum perforatum root cultures to chitosan elicitation had been investigated through 1H-NMR-based metabolomics associated with morpho-anatomical analyses. The root metabolome was influenced by two factors, i.e., time of culture (associated with biomass growth and related “overcrowding stress”) and chitosan elicitation. ANOVA simultaneous component analysis (ASCA) modeling showed that these factors act independently. In response to the increase of biomass density over time, a decrease in the synthesis of isoleucine, valine, pyruvate, methylamine, etanolamine, trigonelline, glutamine and fatty acids, and an increase in the synthesis of phenolic compounds, such as xanthones, epicatechin, gallic, and shikimic acid were observed. Among the xanthones, brasilixanthone B has been identified for the first time in chitosan-elicited root cultures of H. perforatum. Chitosan treatment associated to a slowdown of root biomass growth caused an increase in DMAPP and a decrease in stigmasterol, shikimic acid, and tryptophan levels. The histological analysis of chitosan-treated roots revealed a marked swelling of the root apex, mainly due to the hypertrophy of the first two sub-epidermal cell layers. In addition, periclinal divisions in hypertrophic cortical cells, resulting in an increase of cortical layers, were frequently observed. Most of the metabolic variations as well as the morpho-anatomical alterations occurred within 72 h from the elicitation, suggesting an early response of H. perforatum roots to chitosan elicitation. The obtained results improve the knowledge of the root responses to biotic stress and provide useful information to optimize the biotechnological production of plant compounds of industrial interest

    The Thermal degradation of Bisphenol A Polycarbonate in Air

    Get PDF
    The thermal degradation of polycarbonate in air was studied as a function of mass loss using TGA/FTIR, GC/MS and LC/MS. In the main degradation region, 480–560 °C, the assigned structures of smaller molecules and linear molecules that evolved in air were very similar to those obtained from the degradation in nitrogen; the degradation of polycarbonate follows chain scission of the isopropylidene linkage, in agreement with the bond dissociation energies, and hydrolysis/alcoholysis of carbonate linkage. Compared to the degradation in nitrogen, some differences were observed primarily in the beginning stage of degradation. Oxygen may facilitate branching as well as radical formation via the formation of peroxides. These peroxides undergo further dissociations and combinations, producing aldehydes, ketones and some branched structures, mainly in the beginning stage of degradation. It is speculated that the intermediate char formed in the beginning due to branching reactions of peroxide interferes with the mass transfer through the surface of degrading polycarbonate in the main degradation. Thus, even though the mass loss begins earlier in air, a slower mass loss rate is observed

    Recent advances in the synthesis and application of fluorescent α-amino acids

    Get PDF
    Fluorescence spectroscopy has become a powerful technique for probing a range of complex biological processes including enzyme mechanisms and protein-protein interactions. While the application of this technique uses a number of strategies, many of these rely on the use of fluorescent α-amino acids. This review highlights the recent synthetic methods developed for the incorporation of highly conjugated chromophores into the side-chain of α-amino acids and the application of these compounds as probes for imaging in medicine and biology. In particular, the design and synthesis of α-amino acids bearing coumarin, flavone and polyaromatic derived chromophores is described

    Mangiferin: A Promising Anticancer Bioactive

    Get PDF
    Of late, several biologically active antioxidants from natural products have been investigated by the researchers in order to combat the root cause of carcinogenesis, i.e., oxidative stress. Mangiferin, a therapeutically active C-glucosylated xanthone, is extracted from pulp, peel, seed, bark and leaf of Mangifera indica. These polyphenols of mangiferin exhibit antioxidant properties and tend to decrease the oxygen-free radicals, thereby reducing the DNA damage. Indeed, its capability to modulate several key inflammatory pathways undoubtedly helps in stalling the progression of carcinogenesis. The current review article emphasizes an updated account on the patents published on the chemopreventive action of Mangiferin, apoptosis induction made on various cancer cells, along with proposed antioxidative activities and patent mapping of other important therapeutic properties. Considering it as promising polyphenol, this paper would also summarize the diverse molecular targets of Mangiferin

    Synthesis of Xanton From 2-phenoxybenzoic Acid as a Base Material for New Malaria Drugs

    Full text link
    Synthesis of xanthone was conducted from the raw material of 2-phenoxybenzoic acid through acid-catalyzed-cyclization. The product was characterized using UV- Vis, 1 13 d FT-IR, H-NMR, C-NMR, an LC-MS Cyclization of 2-phenoxybenzoic acid using sulfuric acid catalyt gave xanthone in 86.11 % yield. These compounds as the basis of new malaria drugs.Keywords 2-phenoxybenzoic acid, Synthesis, Xanthone, Characterized
    corecore