1,667,420 research outputs found

    Short Term Memory vs. Working Memory

    Full text link
    Memory can be classified in different ways. In 1980, William James described two types of memory: primary and secondary. Primary memory refers to the “memory for events that have just happened” (Andrade & May, 2004, p. 59). Primary memory which is now referred to as short term memory (STM) is temporary and transient. On the other hand, secondary memory refers to the “memory that happened some time ago” (ibid.) secondary memory is permanent and long-lasting and it is now referred to as long-term memory (LTM) (Andrade & May, 2004)

    Turning the mind’s eye inward: the interplay between selective attention and working memory

    Get PDF
    Historically, cognitive sciences have considered selective attention and working memory as largely separated cognitive functions. That is, selective attention as a concept is typically reserved for the processes that allow for the prioritization of specific sensory input, while working memory entails more central structures for maintaining (and operating on) temporary mental representations. However, over the last decades various observations have been reported that question such sharp distinction. Most importantly, information stored in working memory has been shown to modulate selective attention processing – and vice versa. At the theoretical level, these observations are paralleled by an increasingly dominant focus on working memory as (involving) the attended part of long-term memory, with some positions considering that working memory is equivalent to selective attention turned to long-term memory representations – or internal selective attention. This questions the existence of working memory as a dedicated cognitive function and raises the need for integrative accounts of working memory and attention. The next step will be to explore the precise implications of attentional accounts of WM for the understanding of specific aspects and characteristics of WM, such as serial order processing, its modality-specificity, its capacity limitations, its relation with executive functions, as well as the nature of attentional mechanisms involved. This research topic in Frontiers in Human Neuroscience aims at bringing together the latest insights and findings about the interplay between working memory and selective attention

    Training working memory to reduce rumination

    Get PDF
    Cognitive symptoms of depression, such as rumination, have shown to be associated with deficits in working memory functioning. More precisely, the capacity to expel irrelevant negative information from working memory seems to be affected. Even though these associations have repeatedly been demonstrated, the nature and causal direction of this association is still unclear. Therefore, within an experimental design, we tried to manipulate working memory functioning of participants with heightened rumination scores in two similar experiments (n = 72 and n = 45) using a six day working memory training compared to active and passive control groups. Subsequently the effects on the processing of non-emotional and emotional information in working memory were monitored. In both experiments, performance during the training task significantly increased, but this performance gain did not transfer to the outcome working memory tasks or rumination and depression measures. Possible explanations for the failure to find transfer effects are discussed

    What working memory is for

    Get PDF
    Glenberg focuses on conceptualizations that change from moment to moment, yet he dismisses the concept of working memory (sect. 4.3), which offers an account of temporary storage and on-line cognition. This commentary questions whether Glenberg's account adequately caters for observations of consistent data patterns in temporary storage of verbal and visuospatial information in healthy adults and in brain-damaged patients with deficits in temporary retention.</jats:p

    Social working memory: neurocognitive networks and directions for future research.

    Get PDF
    Navigating the social world requires the ability to maintain and manipulate information about people's beliefs, traits, and mental states. We characterize this capacity as social working memory (SWM). To date, very little research has explored this phenomenon, in part because of the assumption that general working memory systems would support working memory for social information. Various lines of research, however, suggest that social cognitive processing relies on a neurocognitive network (i.e., the "mentalizing network") that is functionally distinct from, and considered antagonistic with, the canonical working memory network. Here, we review evidence suggesting that demanding social cognition requires SWM and that both the mentalizing and canonical working memory neurocognitive networks support SWM. The neural data run counter to the common finding of parametric decreases in mentalizing regions as a function of working memory demand and suggest that the mentalizing network can support demanding cognition, when it is demanding social cognition. Implications for individual differences in social cognition and pathologies of social cognition are discussed

    Working memory load elicits attentional bias to threat

    Get PDF
    Anxious individuals tend to show attentional bias to threats and dangers; this is usually in-terpreted as a specific bias in threat-processing. However, they also tend to show general working memory and cognitive control impairments. We hypothesised that the lack of work-ing memory resources might contribute to attentional bias, by limiting anxious individuals’ ability to regulate their responses to emotional stimuli. If this is true, then loading working memory should elicit attentional bias to threat, even in non-anxious participants. We tested this hypothesis in two experiments, with participants unselected for anxiety. In Experiment 1, a phonological working memory load (remembering a string of digits) elicited an attentional bias to fear-conditioned Japanese words. In Experiment 2, a visuo-spatial working memory load (remembering a series of locations in a matrix of squares) elicited an attentional bias to emotional schematic faces. Results suggest that working memory and cognitive control may moderate the attentional bias to threat commonly observed in anxiety

    Short-term memory as a working memory control process

    Get PDF
    Aben et al. (2012) take issue with the unthoughtful use of the terms “working memory” (WM) and “short-term memory” (STM) in the cognitive and neuroscientific literature. Whereas I agree that neuroscientists using the term WM to refer to sustained neural activation and cognitive psychologists using the terms interchangeably reflects that the field has lost control over its own dictionary, the recommendations to develop more tasks does not seem to get to the heart of the matter. Here, I argue in favor of a theoretical approach to the constructs of WM and STM, as the terms have become as impure as the tasks that purport to measure the constructs

    Variable Rate Working Memories for Phonetic Categorization and Invariant Speech Perception

    Full text link
    Speech can be understood at widely varying production rates. A working memory is described for short-term storage of temporal lists of input items. The working memory is a cooperative-competitive neural network that automatically adjusts its integration rate, or gain, to generate a short-term memory code for a list that is independent of item presentation rate. Such an invariant working memory model is used to simulate data of Repp (1980) concerning the changes of phonetic category boundaries as a function of their presentation rate. Thus the variability of categorical boundaries can be traced to the temporal in variance of the working memory code.Air Force Office of Scientific Research (F49620-92-J-0225, 90-0128); Defense Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100

    Linking working memory and long-term memory: A computational model of the learning of new words

    Get PDF
    The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity. Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change
    corecore