627,599 research outputs found
Improving Statistical Language Model Performance with Automatically Generated Word Hierarchies
An automatic word classification system has been designed which processes
word unigram and bigram frequency statistics extracted from a corpus of natural
language utterances. The system implements a binary top-down form of word
clustering which employs an average class mutual information metric. Resulting
classifications are hierarchical, allowing variable class granularity. Words
are represented as structural tags --- unique -bit numbers the most
significant bit-patterns of which incorporate class information. Access to a
structural tag immediately provides access to all classification levels for the
corresponding word. The classification system has successfully revealed some of
the structure of English, from the phonemic to the semantic level. The system
has been compared --- directly and indirectly --- with other recent word
classification systems. Class based interpolated language models have been
constructed to exploit the extra information supplied by the classifications
and some experiments have shown that the new models improve model performance.Comment: 17 Page Paper. Self-extracting PostScript Fil
Explicit Interaction Model towards Text Classification
Text classification is one of the fundamental tasks in natural language
processing. Recently, deep neural networks have achieved promising performance
in the text classification task compared to shallow models. Despite of the
significance of deep models, they ignore the fine-grained (matching signals
between words and classes) classification clues since their classifications
mainly rely on the text-level representations. To address this problem, we
introduce the interaction mechanism to incorporate word-level matching signals
into the text classification task. In particular, we design a novel framework,
EXplicit interAction Model (dubbed as EXAM), equipped with the interaction
mechanism. We justified the proposed approach on several benchmark datasets
including both multi-label and multi-class text classification tasks. Extensive
experimental results demonstrate the superiority of the proposed method. As a
byproduct, we have released the codes and parameter settings to facilitate
other researches.Comment: 8 page
Validation of Soft Classification Models using Partial Class Memberships: An Extended Concept of Sensitivity & Co. applied to the Grading of Astrocytoma Tissues
We use partial class memberships in soft classification to model uncertain
labelling and mixtures of classes. Partial class memberships are not restricted
to predictions, but may also occur in reference labels (ground truth, gold
standard diagnosis) for training and validation data.
Classifier performance is usually expressed as fractions of the confusion
matrix, such as sensitivity, specificity, negative and positive predictive
values. We extend this concept to soft classification and discuss the bias and
variance properties of the extended performance measures. Ambiguity in
reference labels translates to differences between best-case, expected and
worst-case performance. We show a second set of measures comparing expected and
ideal performance which is closely related to regression performance, namely
the root mean squared error RMSE and the mean absolute error MAE.
All calculations apply to classical crisp classification as well as to soft
classification (partial class memberships and/or one-class classifiers). The
proposed performance measures allow to test classifiers with actual borderline
cases. In addition, hardening of e.g. posterior probabilities into class labels
is not necessary, avoiding the corresponding information loss and increase in
variance.
We implement the proposed performance measures in the R package
"softclassval", which is available from CRAN and at
http://softclassval.r-forge.r-project.org.
Our reasoning as well as the importance of partial memberships for
chemometric classification is illustrated by a real-word application:
astrocytoma brain tumor tissue grading (80 patients, 37000 spectra) for finding
surgical excision borders. As borderline cases are the actual target of the
analytical technique, samples which are diagnosed to be borderline cases must
be included in the validation.Comment: The manuscript is accepted for publication in Chemometrics and
Intelligent Laboratory Systems. Supplementary figures and tables are at the
end of the pd
- …
