238,736 research outputs found
Improving energy efficiency in wireless sensor networks through scheduling and routing
This paper is about the wireless sensor network in environmental monitoring
applications. A Wireless Sensor Network consists of many sensor nodes and a
base station. The number and type of sensor nodes and the design protocols for
any wireless sensor network is application specific. The sensor data in this
application may be light intensity, temperature, pressure, humidity and their
variations .Clustering and routing are the two areas which are given more
attention in this paper.Comment: 7 Pages, 2 Figures and 1 Tabl
A survey of localization in wireless sensor network
Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
Practical Network Coding in Sensor Networks: Quo Vadis?
Abstract. Network coding is a novel concept for improving network ca-pacity. This additional capacity may be used to increase throughput or reliability. Also in wireless networks, network coding has been proposed as a method for improving communication. We present our experience from two studies of applying network coding in realistic wireless sen-sor networks scenarios. As we show, network coding is not as useful in practical deployments as earlier theoretical work suggested. We discuss limitations and future opportunities for network coding in sensor net-works. 1 Network Coding in Wireless Sensor Networks Network Coding was introduced by Ahlswede et al. [1], proving that it can in-crease multicast capacity. Since then, it has been investigated in several different networked scenarios which demand different traffic characteristics. Most previous research has focused on theoretical aspects of applying network coding to sensor networks. There are, however, also more practical examples of applying networ
Resource Aware Sensor Nodes in Wireless Sensor Networks
Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput
A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network
Power management is one of the vital issue in wireless sensor networks, where
the lifetime of the network relies on battery powered nodes. Transmitting at
high power reduces the lifetime of both the nodes and the network. One
efficient way of power management is to control the power at which the nodes
transmit. In this paper, a virtual multiple input multiple output wireless
sensor network (VMIMO-WSN)communication architecture is considered and the
power control of sensor nodes based on the approach of game theory is
formulated. The use of game theory has proliferated, with a broad range of
applications in wireless sensor networking. Approaches from game theory can be
used to optimize node level as well as network wide performance. The game here
is categorized as an incomplete information game, in which the nodes do not
have complete information about the strategies taken by other nodes. For
virtual multiple input multiple output wireless sensor network architecture
considered, the Nash equilibrium is used to decide the optimal power level at
which a node needs to transmit, to maximize its utility. Outcome shows that the
game theoretic approach considered for VMIMO-WSN architecture achieves the best
utility, by consuming less power.Comment: 12 pages, 8 figure
- …
