1,053,732 research outputs found
Wireless model-based predictive networked control system over cooperative wireless network
Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks
MIRAI Architecture for Heterogeneous Network
One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available
Wireless Powered Communication: Opportunities and Challenges
The performance of wireless communication is fundamentally constrained by the
limited battery life of wireless devices, whose operations are frequently
disrupted due to the need of manual battery replacement/recharging. The recent
advance in radio frequency (RF) enabled wireless energy transfer (WET)
technology provides an attractive solution named wireless powered communication
(WPC), where the wireless devices are powered by dedicated wireless power
transmitters to provide continuous and stable microwave energy over the air. As
a key enabling technology for truly perpetual communications, WPC opens up the
potential to build a network with larger throughput, higher robustness, and
increased flexibility compared to its battery-powered counterpart. However, the
combination of wireless energy and information transmissions also raises many
new research problems and implementation issues to be addressed. In this
article, we provide an overview of state-of-the-art RF-enabled WET technologies
and their applications to wireless communications, with highlights on the key
design challenges, solutions, and opportunities ahead.Comment: Accepted for publication by IEEE Communications Magazin
Common security issues and challenges in wireless sensor networks and IEEE 802.11 wireless mesh networks
Both Wireless Mesh Network (WMN) and Wireless Sensor Network (WSN) are multi-hop wireless networks. WMN is an emerging community based integrated broadband wireless network which ensures high bandwidth ubiquitous internet provision to users, while, WSN is application specific and ensures large scale real-time data processing in complex environment. Both these wireless networks have some common vulnerable features which may increase the chances of different sorts of security attacks. Wireless sensor nodes have computation, memory and power limitations, which do not allow for implementation of complex security mechanism. In this paper, we discuss the common limitations and vulnerable features of WMN and WSN, along with the associated security threats and possible countermeasures. We also propose security mechanisms keeping in view the architecture and limitations of both. This article will serve as a baseline guide for the new researchers who are concern with the security aspects of WMN and WSN
- …
