905,565 research outputs found

    Second-Order Weight Distributions

    Full text link
    A fundamental property of codes, the second-order weight distribution, is proposed to solve the problems such as computing second moments of weight distributions of linear code ensembles. A series of results, parallel to those for weight distributions, is established for second-order weight distributions. In particular, an analogue of MacWilliams identities is proved. The second-order weight distributions of regular LDPC code ensembles are then computed. As easy consequences, the second moments of weight distributions of regular LDPC code ensembles are obtained. Furthermore, the application of second-order weight distributions in random coding approach is discussed. The second-order weight distributions of the ensembles generated by a so-called 2-good random generator or parity-check matrix are computed, where a 2-good random matrix is a kind of generalization of the uniformly distributed random matrix over a finite filed and is very useful for solving problems that involve pairwise or triple-wise properties of sequences. It is shown that the 2-good property is reflected in the second-order weight distribution, which thus plays a fundamental role in some well-known problems in coding theory and combinatorics. An example of linear intersecting codes is finally provided to illustrate this fact.Comment: 10 pages, accepted for publication in IEEE Transactions on Information Theory, May 201

    Weighted Distributions: A Brief Review, Perspective and Characterizations

    Get PDF
    The weighted distributions are widely used in many fields such as medicine, ecology and reliability, to name a few, for the development of proper statistical models. Weighted distributions are milestone for efficient modeling of statistical data and prediction when the standard distributions are not appropriate. A good deal of studies related to the weight distributions have been published in the literature. In this article, a brief review of these distributions is carried out. Implications of the differing weight models for future research as well as some possible strategies are discussed. Finally, characterizations of these distributions based on a simple relationship between two truncated moments are presented
    corecore