905,565 research outputs found
Second-Order Weight Distributions
A fundamental property of codes, the second-order weight distribution, is
proposed to solve the problems such as computing second moments of weight
distributions of linear code ensembles. A series of results, parallel to those
for weight distributions, is established for second-order weight distributions.
In particular, an analogue of MacWilliams identities is proved. The
second-order weight distributions of regular LDPC code ensembles are then
computed. As easy consequences, the second moments of weight distributions of
regular LDPC code ensembles are obtained. Furthermore, the application of
second-order weight distributions in random coding approach is discussed. The
second-order weight distributions of the ensembles generated by a so-called
2-good random generator or parity-check matrix are computed, where a 2-good
random matrix is a kind of generalization of the uniformly distributed random
matrix over a finite filed and is very useful for solving problems that involve
pairwise or triple-wise properties of sequences. It is shown that the 2-good
property is reflected in the second-order weight distribution, which thus plays
a fundamental role in some well-known problems in coding theory and
combinatorics. An example of linear intersecting codes is finally provided to
illustrate this fact.Comment: 10 pages, accepted for publication in IEEE Transactions on
Information Theory, May 201
Weighted Distributions: A Brief Review, Perspective and Characterizations
The weighted distributions are widely used in many fields such as medicine, ecology and reliability, to name a few, for the development of proper statistical models. Weighted distributions are milestone for efficient modeling of statistical data and prediction when the standard distributions are not appropriate. A good deal of studies related to the weight distributions have been published in the literature. In this article, a brief review of these distributions is carried out. Implications of the differing weight models for future research as well as some possible strategies are discussed. Finally, characterizations of these distributions based on a simple relationship between two truncated moments are presented
- …
