376,154 research outputs found

    Using food-web theory to conserve ecosystems

    Get PDF
    © 2016, Nature Publishing Group. All rights reserved.Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes

    Enhancing Evolutionary Conversion Rate Optimization via Multi-armed Bandit Algorithms

    Full text link
    Conversion rate optimization means designing web interfaces such that more visitors perform a desired action (such as register or purchase) on the site. One promising approach, implemented in Sentient Ascend, is to optimize the design using evolutionary algorithms, evaluating each candidate design online with actual visitors. Because such evaluations are costly and noisy, several challenges emerge: How can available visitor traffic be used most efficiently? How can good solutions be identified most reliably? How can a high conversion rate be maintained during optimization? This paper proposes a new technique to address these issues. Traffic is allocated to candidate solutions using a multi-armed bandit algorithm, using more traffic on those evaluations that are most useful. In a best-arm identification mode, the best candidate can be identified reliably at the end of evolution, and in a campaign mode, the overall conversion rate can be optimized throughout the entire evolution process. Multi-armed bandit algorithms thus improve performance and reliability of machine discovery in noisy real-world environments.Comment: The Thirty-First Innovative Applications of Artificial Intelligence Conferenc
    corecore