1,398,674 research outputs found

    Dimensionalities of Weak Solutions in Hydrogenic Systems

    Full text link
    A close inspection on the 3D hydrogen atom Hamiltonian revealed formal eigenvectors often discarded in the literature. Although not in its domain, such eigenvectors belong to the Hilbert space, and so their time evolution is well defined. They are then related to the 1D and 2D hydrogen atoms and it is numerically found that they have continuous components, so that ionization can take place

    Uniqueness of solutions for a mathematical model for magneto-viscoelastic flows

    Full text link
    We investigate uniqueness of weak solutions for a system of partial differential equations capturing behavior of magnetoelastic materials. This system couples the Navier-Stokes equations with evolutionary equations for the deformation gradient and for the magnetization obtained from a special case of the micromagnetic energy. It turns out that the conditions on uniqueness coincide with those for the well-known Navier-Stokes equations in bounded domains: weak solutions are unique in two spatial dimensions, and weak solutions satisfying the Prodi-Serrin conditions are unique among all weak solutions in three dimensions. That is, we obtain the so-called weak-strong uniqueness result in three spatial dimensions

    Weak solutions to problems involving inviscid fluids

    Full text link
    We consider an abstract functional-differential equation derived from the pressure-less Euler system with variable coefficients that includes several systems of partial differential equations arising in the fluid mechanics. Using the method of convex integration we show the existence of infinitely many weak solutions for prescribed initial data and kinetic energy
    corecore