52,779 research outputs found
Signatures of two-step impurity mediated vortex lattice melting in Bose-Einstein Condensates
We simulate a rotating 2D BEC to study the melting of a vortex lattice in
presence of random impurities. Impurities are introduced either through a
protocol in which vortex lattice is produced in an impurity potential or first
creating the vortex lattice in the absence of random pinning and then cranking
up the (co-rotating) impurity potential. We find that for a fixed strength,
pinning of vortices at randomly distributed impurities leads to the new states
of vortex lattice. It is unearthed that the vortex lattice follow a two-step
melting via loss of positional and orientational order. Also, the comparisons
between the states obtained in two protocols show that the vortex lattice
states are metastable states when impurities are introduced after the formation
of an ordered vortex lattice. We also show the existence of metastable states
which depend on the history of how the vortex lattice is created.Comment: Accepted in Euro. Phys. Let
Ginzburg-Landau Theory for a p-Wave Sr_2RuO_4 Superconductor: Vortex Core Structure and Extended London Theory
Based on a two dimensional odd-parity superconducting order parameter for
Sr_2RuO_4 with p-wave symmetry, we investigate the single vortex and vortex
lattice structure of the mixed phase near H_{c1}. Ginzburg-Landau calculations
for a single vortex show a fourfold structure with an orientation depending on
the microscopic Fermi surface properties. The corresponding extended London
theory is developed to determine the vortex lattice structure and we find near
H_{c1} a centered rectangular vortex lattice. As the field is increased from
H_{c1} this lattice continuously deforms until a square vortex lattice is
achieved. In the centered rectangular phase the field distribution, as
measurable through \mu-SR experiments, exhibits a characteristic two peak
structure (similar to that predicted in high temperature and borocarbide
superconductors).Comment: 12 pages, 7 figure
Order in driven vortex lattices in superconducting Nb films with nanostructured pinning potentials
Driven vortex lattices have been studied in a material with strong pinning,
such as Nb films. Samples in which natural random pinning coexists with
artificial ordered arrays of defects (submicrometric Ni dots) have been
fabricated with different geometries (square, triangular and rectangular).
Three different dynamic regimes are found: for low vortex velocities, there is
a plastic regime in which random defects frustrate the effect of the ordered
array; then, for vortex velocities in the range 1-100 m/s, there is a sudden
increase in the interaction between the vortex lattice and the ordered dot
array, independent on the geometry. This effect is associated to the onset of
quasi long range order in the vortex lattice leading to an increase in the
overlap between the vortex lattice and the magnetic dots array. Finally, at
larger velocities the ordered array-vortex lattice interaction is suppresed
again, in agreement with the behavior found in numerical simulations.Comment: 8 text pages + 4 figure
Vortex-lattice melting in a one-dimensional optical lattice
We investigate quantum fluctuations of a vortex lattice in a one-dimensional
optical lattice. Our method gives full access to all the modes of the vortex
lattice and we discuss in particular the Bloch bands of the Tkachenko modes.
Because of the small number of particles in the pancake Bose-Einstein
condensates at every site of the optical lattice, finite-size effects become
very important. Therefore, the fluctuations in the vortex positions are
inhomogeneous and the melting of the lattice occurs from the outside inwards.
Tunneling between neighbouring pancakes substantially reduces the inhomogeneity
as well as the size of the fluctuations.Comment: 4 pages, 4 figure
Collective Josephson vortex dynamics in a finite number of intrinsic Josephson junctions
We report the experimental confirmation of the collective transverse plasma
modes excited by the Josephson vortex lattice in stacks of intrinsic Josephson
junctions in BiSrCaCuO single crystals. The
excitation was confirmed by analyzing the temperature () and magnetic field
() dependencies of the multiple sub-branches in the Josephson-vortex-flow
region of the current-voltage characteristics of the system. In the near-static
Josephson vortex state for a low tunneling bias current, pronounced
magnetoresistance oscillations were observed, which represented a
triangular-lattice vortex configuration along the c axis. In the dynamic vortex
state in a sufficiently high magnetic field and for a high bias current,
splitting of a single Josephson vortex-flow branch into multiple sub-branches
was observed. Detailed examination of the sub-branches for varying field
reveals that sub-branches represent the different modes of the Josephson-vortex
lattice along the c axis, with varied configuration from a triangular to a
rectangular lattices. These multiple sub-branches merge to a single curve at a
characteristic temperature, above which no dynamical structural transitions of
the Josephson vortex lattice is expected
Asymmetric vortex solitons in nonlinear periodic lattices
We reveal the existence of asymmetric vortex solitons in ideally symmetric
periodic lattices, and show how such nonlinear localized structures describing
elementary circular flows can be analyzed systematically using the
energy-balance relations. We present the examples of rhomboid, rectangular, and
triangular vortex solitons on a square lattice, and also describe novel
coherent states where the populations of clockwise and anti-clockwise vortex
modes change periodically due to a nonlinearity-induced momentum exchange
through the lattice. Asymmetric vortex solitons are expected to exist in
different nonlinear lattice systems including optically-induced photonic
lattices, nonlinear photonic crystals, and Bose-Einstein condensates in optical
lattices.Comment: 4 pages, 5 figure
Vortex lattice structure in a d_{x^2-y^2}-wave superconductor
The vortex lattice structure in a d_{x^2-y^2}-wave superconductor is
investigated near the upper critical magnetic field in the framework of the
Ginzburg Landau theory extended by including the correction terms such as the
higher order derivatives derived from the Gor'kov equation. On lowering
temperature, the unit cell shape of the vortex lattice gradually varies from a
regular triangular lattice to a square lattice through the shape of an
isosceles triangle. As for the orientation of the vortex lattice, the base of
an isosceles triangle is along the a axis or the b axis of the crystal. The
fourfold symmetric structure around a vortex core is also studied in the vortex
lattice case. It is noted that these characteristic features appear even in the
case the induced s-wave order parameter is absent around the vortex of the
d_{x^2-y^2}-wave superconductivity. We also investigate the effect of the
induced s-wave order parameter. It enhances (suppresses) these characteristic
features of the d_{x^2-y^2}-wave superconductor when the s-wave component of
the interaction is attractive (repulsive).Comment: 20 pages, RevTex, 9 figures in 3 PS-files and 5 GIF-file
- …
