749,632 research outputs found

    A wide input-voltage range quasi-Z source boost DC-DC converter with high voltage-gain for fuel cell vehicles

    Get PDF
    A quasi-Z-source Boost DC-DC converter which uses a switched-capacitor is proposed for fuel cell vehicles. The topology can obtain a high voltage gain with a wide input-voltage range, and requires only a low voltage stress across each of the components. The performance of the proposed converter is compared with other converters which use Z-source networks. A scaled-down 400V/400W prototype is developed to validate the proposed technology. The respective variation in the output voltage is avoided when the wide variation in the input voltage happens, due to the PI controller in the voltage loop, and a maximum efficiency of 95.13% is measured

    Inverter-Based Low-Voltage CCII- Design and Its Filter Application

    Get PDF
    This paper presents a negative type second-generation current conveyor (CCII-). It is based on an inverter-based low-voltage error amplifier, and a negative current mirror. The CCII- could be operated in a very low supply voltage such as ±0.5V. The proposed CCII- has wide input voltage range (±0.24V), wide output voltage (±0.24V) and wide output current range (±24mA). The proposed CCII- has no on-chip capacitors, so it can be designed with standard CMOS digital processes. Moreover, the architecture of the proposed circuit without cascoded MOSFET transistors is easily designed and suitable for low-voltage operation. The proposed CCII- has been fabricated in TSMC 0.18μm CMOS processes and it occupies 1189.91 x 1178.43μm2 (include PADs). It can also be validated by low voltage CCII filters

    Improved low cost ac-to-dc converter

    Get PDF
    Circuit converts an rms, ac voltage to a proportional dc voltage with good accuracy over a voltage range of approximately 6-1. It incorporates a pair of vacuum thermocouples in a dc feedback circuit

    Externally programmed variable timer

    Get PDF
    Device satisfies 1-sec, 5-sec, and 10-min timing requirements. Temperature and voltage range accuracy is plus or minus 3.9 percent with voltage variations of 24 to 31 Vdc over temperature range of minus 55 deg C to plus 125 deg C

    Grain refinement control in TIG arc welding

    Get PDF
    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced

    Digitally controlled pulse-level discriminator operates over wide voltage range

    Get PDF
    Low power drain discriminator circuit generates an output pulse when an input pulse exceeds a discrete digitally controlled threshold voltage. The discriminator operates over a wide linear or nonlinear range of threshold levels. It uses several amplifier stages ahead of a fixed-reference threshold detector

    Morphing Switched-Capacitor Converters with Variable Conversion Ratio

    Get PDF
    High-voltage-gain and wide-input-range dc-dc converters are widely used in various electronics and industrial products such as portable devices, telecommunication, automotive, and aerospace systems. The two-stage converter is a widely adopted architecture for such applications, and it is proven to have a higher efficiency as compared with that of the single-stage converter. This paper presents a modular-cell-based morphing switched-capacitor (SC) converter for application as a front-end converter of the two-stage converter. The conversion ratio of this converter is flexible and variable and can be freely extended by increasing more SC modules. The varying conversion ratio is achieved through the morphing of the converter's structure corresponding to the amplitude of the input voltage. This converter is light and compact, and is highly efficient over a very wide range of input voltage and load conditions. Experimental work on a 25-W, 6-30-V input, 3.5-8.5-V output prototype, is performed. For a single SC module, the efficiency over the entire input voltage range is higher than 98%. Applied into the two-stage converter, the overall efficiency achievable over the entire operating range is 80% including the driver's loss

    Voltage regulator with multiple parallel power source sections

    Get PDF
    Voltage regulator provides improved voltage-regulating system in which power dissipation and consequent heat generation are minimized. Each power source section is controlled sequentially so that only one operates in a linear range at a time
    corecore