1,200,885 research outputs found

    Using Virtual Reality to increase technical performance during rowing workouts

    Get PDF
    Technology is advancing rapidly in virtual reality (VR) and sensors, gathering feedback from our body and the environment we are interacting in. Combining the two technologies gives us the opportunity to create personalized and reactive immersive environments. These environments can be used e.g. for training in dangerous situations (e.g. fire, crashes, etc), or to improve skills with less distraction than regular natural environments would have. The pilot study described in this thesis puts an athlete who is rowing on a stationary rowing machine into a virtual environment. The VR takes movement from several sensors of the ergo-meter and displays those in VR. In addition, metrics on technique are being derived from the sensor data and physiological data. All this is used to investigate if, and to which extent, VR may improve the technical skills of the athlete during the complex sport of rowing. Furthermore, athletes are giving subjective feedback about their experience comparing a standard rowing workout, with the workout using VR. First results indicate better performance and an enhanced experience by the athlete

    How open are journalists on Twitter? Trends towards the end-user journalism

    Get PDF
    The many activities of journalists on Twitter should be analyzed. Are they doing a different kind of journalism? With a content analysis of 1125 tweets, this study reveals trends of some Spanish journalists using Twitter. A traditional role like gatekeeping can be highly amplified in terms of transparency and accountability with actions as retweeting or linking. The landscape offered by this platform is framed with the "ambient journalism", which will help to understand the proposal of this study: the end-user journalism. The findings will show the level of opening with the audience in aspects about replies, requests and linking

    Outage Capacity for the Optical MIMO Channel

    Full text link
    MIMO processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes and/or multiple cores in the fiber. In this paper we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant cross talk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.Comment: Revised version includes more details, proofs and a closed-form expression for the outage probabilit

    Early amniotomy after cervical ripening for induction of labor: a systematic review and meta-analysis of randomized controlled trials

    Get PDF
    OBJECTIVE DATA: Timing of artificial rupture of membranes (ie, amniotomy) in induction of labor is controversial, because it has been associated not only with shorter labors, but also with fetal nonreassuring testing, at times necessitating cesarean delivery. The aim of this systematic review and metaanalysis of randomized trials was to evaluate the effectiveness of early amniotomy vs late amniotomy or spontaneous rupture of membranes after cervical ripening. STUDY: The search was conducted with the use of electronic databases from inception of each database through February 2019. Review of articles included the abstracts of all references that were retrieved from the search. STUDY APPRAISAL AND SYNTHESIS METHODS: Selection criteria included randomized clinical trials that compared early amniotomy vs control (ie, late amniotomy or spontaneous rupture of membranes) after cervical ripening with either Foley catheter or prostaglandins at any dose. The primary outcome was the incidence of cesarean delivery. The summary measures were reported as summary relative risk with 95% of confidence interval with the use of the random effects model of DerSimonian and Laird. RESULTS: Four trials that included 1273 women who underwent cervical ripening with either Foley catheter or prostaglandins and then were assigned randomly to either early amniotomy, late amniotomy, or spontaneous rupture of membranes (control subjects) were included in the review. Women who were assigned randomly to early amniotomy had a similar risk of cesarean delivery (31.1% vs 30.9%; relative risk, 1.05; 95% confidence interval, 0.71-1.56) compared with control subjects and had a shorter interval from induction to delivery of approximately 5 hours (mean difference, -4.95 hours; 95% confidence interval, -8.12 to -1.78). Spontaneous vaginal delivery was also reduced in the early amniotomy group, but only 1 of the included trials reported this outcome (67.5% vs 69.1%; relative risk, 0.78; 95% confidence interval, 0.66-0.93). No between-group differences were reported in the other obstetrics or perinatal outcomes. CONCLUSION: After cervical ripening, routine early amniotomy does not increase the risk of cesarean delivery and reduces the interval from induction to delivery

    Random pure states: quantifying bipartite entanglement beyond the linear statistics

    Get PDF
    We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions NN and MM. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N≀MN \leq M, a general relation between the nn-point densities and the cross-moments of the eigenvalues of the reduced density matrix, i.e. the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N,MN,M. Then we focus on the moments E{Ka}\mathbb{E}\{K^a\} of the Schmidt number KK, the reciprocal of the purity. This is a random variable supported on [1,N][1,N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{Ka}\mathbb{E}\{K^a\} for N=2N = 2 and N=3N=3 and arbitrary MM, and also for square N=MN = M systems by spotting for the latter a connection with the probability P(xminGUE≄2NΟ)P(x_{min}^{GUE} \geq \sqrt{2N}\xi) that the smallest eigenvalue xminGUEx_{min}^{GUE} of a N×NN\times N matrix belonging to the Gaussian Unitary Ensemble is larger than 2NΟ\sqrt{2N}\xi. As a byproduct, we present an exact asymptotic expansion for P(xminGUE≄2NΟ)P(x_{min}^{GUE} \geq \sqrt{2N}\xi) for finite NN as Ο→∞\xi \to \infty. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.Comment: 22 pages, 8 figures. Minor changes, typos fixed. Accepted for publication in PR

    In vivo evaluation of operative torque generated by two Nickel-Titanium rotary instruments during root canal preparation

    Get PDF
    Objectives This in vivo study evaluated the operative torque and preparation time of ProTaper NEXT (Dentsply Maillefer; Ballaigues, Switzerland) and EdgeFile X7 (EdgeEndo; Albuquerque, New Mexico, United States) rotary systems during root canal preparation of maxillary premolars. Materials and Methods Ten double-rooted maxillary premolars with independent canals were selected. Each canal in each tooth was prepared with one of the rotary systems (n = 10), ProTaper NEXT or EdgeFile X7. The instruments were rotated at 300 rpm with maximum torque set at 2 N.cm using an electric motor (KaVo; Biberach, Germany) that automatically recorded torque values at every 1/10th of a second (ds). Statistical Analysis Operative torque (N.cm) and preparation time (s) of the first shaping instrument (size 17/.04) of both rotary systems were recorded and statistically compared using the Mann-Whiney U test with a significance level set at 5%. Results No instrument exhibited flute deformation or underwent intracanal failure. No differences were found between the instruments regarding the maximum (peak) torque values (p > 0.05). EdgeFile X7 17/.04 required significantly less preparation time (3.75 seconds interquartile range [IQR]: 3.2-9.0) than ProTaper NEXT X1 (15.45 seconds IQR: 8.35-21.1) (p < 0.05). The median operative torque values of ProTaper NEXT X1 (0.26 N.cm; IQR: 0.18-0.49) were significantly higher compared with EdgeFile X7 17/.04 (0.09 N.cm; IQR: 0.05-0.17) (p < 0.05). Conclusions Although no difference was found between the median peak torque values of ProTaper NEXT X1 and EdgeFile X7 17/.04 instruments, the operative torque and instrumentation time results were impacted by their different designs and alloys during clinical preparation of root canals
    • 

    corecore