50,065 research outputs found
GSLAM: Initialization-robust Monocular Visual SLAM via Global Structure-from-Motion
Many monocular visual SLAM algorithms are derived from incremental
structure-from-motion (SfM) methods. This work proposes a novel monocular SLAM
method which integrates recent advances made in global SfM. In particular, we
present two main contributions to visual SLAM. First, we solve the visual
odometry problem by a novel rank-1 matrix factorization technique which is more
robust to the errors in map initialization. Second, we adopt a recent global
SfM method for the pose-graph optimization, which leads to a multi-stage linear
formulation and enables L1 optimization for better robustness to false loops.
The combination of these two approaches generates more robust reconstruction
and is significantly faster (4X) than recent state-of-the-art SLAM systems. We
also present a new dataset recorded with ground truth camera motion in a Vicon
motion capture room, and compare our method to prior systems on it and
established benchmark datasets.Comment: 3DV 2017 Project Page: https://frobelbest.github.io/gsla
Change it Now: eBay v. MercExchange-Business Method Patent Litigation Reaches Critical Juncture Concerning Remedies for Infringement
Visual simultaneous localization and mapping (SLAM) as field has been researched for ten years, but with recent advances in mobile performance visual SLAM is entering the consumer market in a completely new way. A visual SLAM system will however be sensitive to non cautious use that may result in severe motion, occlusion or poor surroundings in terms of visual features that will cause the system to temporarily fail. The procedure of recovering from such a fail is called relocalization. Together with two similar problems localization, to find your position in an existing SLAM session, and loop closing, the online reparation and perfection of the map in an active SLAM session, these can be grouped as visual location recognition (VLR). This thesis presents novel results by combining the scalability of FabMap and the precision of 13th Lab's tracking yielding high-precision VLR, +/- 10 cm, while maintaining above 99 % precision and 60 % recall for sessions containing thousands of images. Everything functional purely on a normal mobile phone. The applications of VLR are many. Indoors, where GPS is not functioning, VLR can still provide positional information and navigate you through big complexes like airports and museums. Outdoors, VLR can improve the precision of GPS tenfold yielding a new level of navigational experience. Virtual and augmented reality applications are other areas that benefit from improved positioning and localization
An Efficient Index for Visual Search in Appearance-based SLAM
Vector-quantization can be a computationally expensive step in visual
bag-of-words (BoW) search when the vocabulary is large. A BoW-based appearance
SLAM needs to tackle this problem for an efficient real-time operation. We
propose an effective method to speed up the vector-quantization process in
BoW-based visual SLAM. We employ a graph-based nearest neighbor search (GNNS)
algorithm to this aim, and experimentally show that it can outperform the
state-of-the-art. The graph-based search structure used in GNNS can efficiently
be integrated into the BoW model and the SLAM framework. The graph-based index,
which is a k-NN graph, is built over the vocabulary words and can be extracted
from the BoW's vocabulary construction procedure, by adding one iteration to
the k-means clustering, which adds small extra cost. Moreover, exploiting the
fact that images acquired for appearance-based SLAM are sequential, GNNS search
can be initiated judiciously which helps increase the speedup of the
quantization process considerably
DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments
Simultaneous Localization and Mapping (SLAM) is considered to be a
fundamental capability for intelligent mobile robots. Over the past decades,
many impressed SLAM systems have been developed and achieved good performance
under certain circumstances. However, some problems are still not well solved,
for example, how to tackle the moving objects in the dynamic environments, how
to make the robots truly understand the surroundings and accomplish advanced
tasks. In this paper, a robust semantic visual SLAM towards dynamic
environments named DS-SLAM is proposed. Five threads run in parallel in
DS-SLAM: tracking, semantic segmentation, local mapping, loop closing, and
dense semantic map creation. DS-SLAM combines semantic segmentation network
with moving consistency check method to reduce the impact of dynamic objects,
and thus the localization accuracy is highly improved in dynamic environments.
Meanwhile, a dense semantic octo-tree map is produced, which could be employed
for high-level tasks. We conduct experiments both on TUM RGB-D dataset and in
the real-world environment. The results demonstrate the absolute trajectory
accuracy in DS-SLAM can be improved by one order of magnitude compared with
ORB-SLAM2. It is one of the state-of-the-art SLAM systems in high-dynamic
environments. Now the code is available at our github:
https://github.com/ivipsourcecode/DS-SLAMComment: 7 pages, accepted at the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2018). Now the code is available at our
github: https://github.com/ivipsourcecode/DS-SLA
Data-Efficient Decentralized Visual SLAM
Decentralized visual simultaneous localization and mapping (SLAM) is a
powerful tool for multi-robot applications in environments where absolute
positioning systems are not available. Being visual, it relies on cameras,
cheap, lightweight and versatile sensors, and being decentralized, it does not
rely on communication to a central ground station. In this work, we integrate
state-of-the-art decentralized SLAM components into a new, complete
decentralized visual SLAM system. To allow for data association and
co-optimization, existing decentralized visual SLAM systems regularly exchange
the full map data between all robots, incurring large data transfers at a
complexity that scales quadratically with the robot count. In contrast, our
method performs efficient data association in two stages: in the first stage a
compact full-image descriptor is deterministically sent to only one robot. In
the second stage, which is only executed if the first stage succeeded, the data
required for relative pose estimation is sent, again to only one robot. Thus,
data association scales linearly with the robot count and uses highly compact
place representations. For optimization, a state-of-the-art decentralized
pose-graph optimization method is used. It exchanges a minimum amount of data
which is linear with trajectory overlap. We characterize the resulting system
and identify bottlenecks in its components. The system is evaluated on publicly
available data and we provide open access to the code.Comment: 8 pages, submitted to ICRA 201
ProSLAM: Graph SLAM from a Programmer's Perspective
In this paper we present ProSLAM, a lightweight stereo visual SLAM system
designed with simplicity in mind. Our work stems from the experience gathered
by the authors while teaching SLAM to students and aims at providing a highly
modular system that can be easily implemented and understood. Rather than
focusing on the well known mathematical aspects of Stereo Visual SLAM, in this
work we highlight the data structures and the algorithmic aspects that one
needs to tackle during the design of such a system. We implemented ProSLAM
using the C++ programming language in combination with a minimal set of well
known used external libraries. In addition to an open source implementation, we
provide several code snippets that address the core aspects of our approach
directly in this paper. The results of a thorough validation performed on
standard benchmark datasets show that our approach achieves accuracy comparable
to state of the art methods, while requiring substantially less computational
resources.Comment: 8 pages, 8 figure
- …
