591,245 research outputs found
Cyber-Virtual Systems: Simulation, Validation & Visualization
We describe our ongoing work and view on simulation, validation and
visualization of cyber-physical systems in industrial automation during
development, operation and maintenance. System models may represent an existing
physical part - for example an existing robot installation - and a software
simulated part - for example a possible future extension. We call such systems
cyber-virtual systems.
In this paper, we present the existing VITELab infrastructure for
visualization tasks in industrial automation. The new methodology for
simulation and validation motivated in this paper integrates this
infrastructure. We are targeting scenarios, where industrial sites which may be
in remote locations are modeled and visualized from different sites anywhere in
the world.
Complementing the visualization work, here, we are also concentrating on
software modeling challenges related to cyber-virtual systems and simulation,
testing, validation and verification techniques for them. Software models of
industrial sites require behavioural models of the components of the industrial
sites such as models for tools, robots, workpieces and other machinery as well
as communication and sensor facilities. Furthermore, collaboration between
sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2014
The Virtual Storyteller: story generation by simulation
The Virtual Storyteller is a multi-agent framework that generates stories based on a concept called emergent narrative. In this paper, we describe the motivation and approach of the Virtual Storyteller, and give an overview of the computational processes involved in the story generation process. We also discuss some of the challenges posed by our chosen approach
Virtual Simulation Objects Concept as a Framework for System-Level Simulation
This paper presents Virtual Simulation Objects (VSO) concept which forms
theoretical basis for building tools and framework that is developed for
system-level simulations using existing software modules available within
cyber-infrastructure. Presented concept is implemented by the software tool for
building composite solutions using VSO-based GUI and running them using CLAVIRE
simulation environment.Comment: Proceedings of IEEE e-Sceince Conference. 2012. CD-ROM. ISBN
978-1-4673-4465-
Design, implementation, and testing of advanced virtual coordinate-measuring machines
Copyright @ 2011 IEEE. This article has been made available through the Brunel Open Access Publishing Fund.Advanced virtual coordinate-measuring machines (CMMs) (AVCMMs) have recently been developed at Brunel University, which provide vivid graphical representation and powerful simulation of CMM operations, together with Monte-Carlo-based uncertainty evaluation. In an integrated virtual environment, the user can plan an inspection strategy for a given task, carry out virtual measurements, and evaluate the uncertainty associated with the measurement results, all without the need of using a physical machine. The obtained estimate of uncertainty can serve as a rapid feedback for the user to optimize the inspection plan in the AVCMM before actual measurements or as an evaluation of the measurement results performed. This paper details the methodology, design, and implementation of the AVCMM system, including CMM modeling, probe contact and collision detection, error modeling and simulation, and uncertainty evaluation. This paper further reports experimental results for the testing of the AVCMM
Overview of crowd simulation in computer graphics
High-powered technology use computer graphics in education, entertainment, games, simulation, and virtual heritage applications has led it to become an important area of research. In simulation, according to Tecchia et al. (2002), it is important to create an interactive, complex, and realistic virtual world so that the user can have an immersive experience during navigation through the world. As the size and complexity of the environments in the virtual world increased, it becomes more necessary to populate them with peoples, and this is the reason why rendering the crowd in real-time is very crucial. Generally, crowd simulation consists of three important areas. They are realism of behavioral (Thompson and Marchant 1995), high-quality visualization (Dobbyn et al. 2005) and convergence of both areas. Realism of behavioral is mainly used for simple 2D visualizations because most of the attentions are concentrated on simulating the behaviors of the group. High quality visualization is regularly used for movie productions and computer games. It gives intention on producing more convincing visual rather than realism of behaviors. The convergences of both areas are mainly used for application like training systems. In order to make the training system more effective, the element of valid replication of the behaviors and high-quality visualization is added
Simulation of an Axial Vircator
An algorithm of particle-in-cell simulations is described and tested to aid
further the actual design of simple vircators working on axially symmetric
modes. The methods of correction of the numerical solution, have been chosen
and jointly tested, allow the stable simulation of the fast nonlinear multiflow
dynamics of virtual cathode formation and evolution, as well as the fields
generated by the virtual cathode. The selected combination of the correction
methods can be straightforwardly generalized to the case of axially
nonsymmetric modes, while the parameters of these correction methods can be
widely used to improve an agreement between the simulation predictions and the
experimental data.Comment: 9 pages, 3 figure
- …
