260,936 research outputs found
Interventions to Control Virus Transmission During an Outbreak of Ebola Hemorrhagic Fever: Experience from Kikwit, Democratic Republic of the Congo, 1995.
On 6 May 1995, the Médecins sans Frontières (MSF) coordinator in Kinshasa, Democratic Republic of the Congo (DRC), received a request for assistance for what was believed to be a concurrent outbreak of bacillary dysentery and viral hemorrhagic fever (suspected Ebola hemorrhagic fever [EHF]) in the town of Kikwit, DRC. On 11 May, the MSF intervention team assessed Kikwit General Hospital. This initial assessment revealed a nonfunctional isolation ward for suspected EHF cases; a lack of water and electricity; no waste disposal system; and no protective gear for medical staff. The priorities set by MSF were to establish a functional isolation ward to deal with EHF and to distribute protective supplies to individuals who were involved with patient care. Before the intervention, 67 health workers contracted EHF; after the initiation of control measures, just 3 cases were reported among health staff and none among Red Cross volunteers involved in body burial
Culex tarsalis is a competent vector species for Cache Valley virus
Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is
an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially
sheep. The importance of CVV in human public health has recently increased because of the report of severe
neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be
determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex
pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species
responsible for the transmission of CVV from viremic vertebrate hosts to humans.
Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this
study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx.
pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from
infected Cx. tarsalis provided evidence supporting its role as a competent vector.
Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis
as a competent vector
Virus isolation studies suggest short-term variations in abundance in natural cyanophage populations of the Indian Ocean
Cyanophage abundance has been shown to fluctuate over long timescales and with depth, but little is known about how it varies over short timescales. Previous short-term studies have relied on counting total virus numbers and therefore the phages which infect cyanobacteria cannot be distinguished from the total count.
In this study, an isolation-based approach was used to determine cyanophage abundance from water samples collected over a depth profile for a 24 h period from the Indian Ocean. Samples were used to infect Synechococcus sp. WH7803 and the number of plaque forming units (pfu) at each time point and depth were counted. At 10 m phage numbers were similar for most time-points, but there was a distinct peak in abundance at 0100 hours. Phage numbers were lower at 25 m and 50 m and did not show such strong temporal variation. No phages were found below this depth. Therefore, we conclude that only the abundance of phages in surface waters showed a clear temporal pattern over a short timescale. Fifty phages from a range of depths and time points were isolated and purified. The molecular diversity of these phages was estimated using a section of the phage-encoded psbD gene and the results from a phylogenetic analysis do not suggest that phages from the deeper waters form a distinct subgroup
In vivo evidence for quasispecies distributions in the bovine respiratory syncytial virus genome
We analyzed the genetic evolution of bovine respiratory syncytial virus (BRSV) isolate W2-00131, from its isolation in bovine turbinate (BT) cells to its inoculation in calves. Results showed that the BRSV genomic region encoding the highly variable glycoprotein G remains genetically stable after virus isolation and over 10 serial infections in BT cells, as well as following experimental inoculation in calves. This remarkable genetic stability led us to examine the mutant spectrum of several populations derived from this field isolate. Sequence analysis of molecular clones revealed an important genetic heterogeneity in G coding region of each population, with mutation frequencies ranging from 6.8 to 10.1 10-4 substitutions/nucleotide. The non-synonymous mutations of the mutant spectrum mapped preferentially within the two variable antigenic regions of the ectodomain or close to the highly conserved domain. These results suggest that RSV populations may evolve as complex and dynamic mutant swarms, despite apparent genetic stability
Basic biology and clinical application of multipotent mesenchymal stromal cells : from bench to bedside
Phylogeography of Japanese encephalitis virus:genotype is associated with climate
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
Human Cytomegalovirus: detection of congenital and perinatal infection in Argentina
BACKGROUND: Human cytomegalovirus (CMV) is one of the most commonly found agents of congenital infections. Primary maternal infection is associated with risk of symptomatic congenital diseases, and high morbidity is frequently associated with very low birth weight. Neonates with asymptomatic infection develop various sequelae during infancy. This is the first Argentine study performed in neonates with congenital and postnatal HCMV infection. The purpose of this study was to evaluate the performance of the polymerase chain reaction (PCR) technique with different pairs of primers, to detect cytomegalovirus isolated in tissue cultures and directly in urine and dried blood spot (DBS) specimens. Results were compared with IgM detection. METHODS: The study was performed between 1999 and 2001 on routine samples in the Laboratory. A total of 61 urine and 56 serum samples were selected from 61 newborns/infants, 33 patients whose samples were analyzed during the first two to three weeks of life were considered congenital infections; the remaining 28 patients whose samples were taken later than the third week were grouped as perinatal infections, although only in 4 the perinatal transmission of infection was determined unequivocally Cytomegalovirus diagnosis was made by isolating the virus from urine samples in human foreskin fibroblast cells. Three different primer pairs directed to IE, LA and gB genes were used for the HCMV PCR assay in viral isolates. Subsequently, PCR and nested PCR (nPCR) assays with gB primers were performed directly in urine and in 11 samples of dried blood spot (DBS) on Guthrie Card, these results were then compared with serology. RESULTS: The main clinical manifestations of the 33 patients with congenital infection were purpura, jaundice, hepatomegaly and anaemia. Three patients presented low birth weight as single symptom, 10, intracranial calcifications, and 2, kidney failure. In the 28 patients grouped as with perinatal infection, anaemia, hepatosplenomegaly and enzymatic alteration were predominant, and 4 patients were HIV positive. The primers used to amplify the gB region had a PCR positivity rate of 100%, whereas those that amplified IE and LA regions had a PCR positivity rate of 54% and 61% respectively, in CMV isolates. Amplification by PCR of urine samples (with no previous DNA extraction), using primers for the gB region, detected 34/61 positive samples. Out of the 33 samples from patients with congenital infection, 24 (73%) were positive. When nPCR was used in these samples, all were positive, whereas in the remaining 28 patients, two negative cases were found. Cytomegalovirus DNA detection in 11 samples was also carried out in DBS: 7 DBS samples were positive and 4 were negative. CONCLUSIONS: Primers directed to the gB fragment region were the best choice for the detection of CMV DNA in positive isolates. In congenital infections, direct PCR in urine was positive in a high percentage (73%) of samples; however, in patients grouped as with perinatal infection only 36% of the cases were positive. With n-PCR, total sample positivity reached 97%. PCR technique performed in DBS allowed identifying congenital infection in four patients and to be confirmed in 3. These results show the value of nPCR for the detection of all cases of CMV infection. The assay offers the advantage that it may be performed within the normal working day and provides reliable results in a much shorter time frame than that required for either traditional tissue culture or the shell-viral assay
Molecular detection and phylogenetic analysis of Peste des petits ruminants virus circulating in small ruminants in eastern Amhara region, Ethiopia
Background: Peste des Petits Ruminants (PPR) is a severe, highly infectious and fatal viral disease of small ruminants. Four lineages of PPR virus have been identified globally based on sequence analysis of the nucleoprotein (N) and fusion (F) gene. The aim of this study was to isolate and genetically characterize recently circulating PPR virus in small ruminants in the eastern Amhara region in Ethiopia. A total of 28 anti-mortem samples (gum debris, nasal and ocular swab) were collected from clinically suspicious animals and examined for the presence of PPRV by a one-step RT-PCR assay. Samples positive with RT-PCR were subjected to isolation of the virus which were subsequently genetically characterized by sequencing of the nucleoprotein (N) gene and phylogenetic analysis of PPR virus (PPRV) strains. Results: Of the 28 clinical samples examined, 46.4% were positive with RT-PCR for viral nucleic acid. The PPRV was successfully isolated on CHS-20 cell line with the ovine signaling lymphocyte activation molecule (SLAM) receptor expressed on the cell surface and confirmed with RT-PCR and IFAT assay. The nucleotide sequence and phylogenetic analysis indicated that the PPRV obtained were clustered genetically with Lineage IV isolates of the virus. Conclusion: The successful isolation of the virus and molecular findings of this study confirmed active lineage IV PPRV infections among populations of sheep and goats in eastern Amhara, suggesting risks for potential spread of the disease to currently free areas. Thus, we recommend systematic vaccination to contain outbreaks in affected districts and geographically linked surrounding districts to which the disease could potentially spread due to different epidemiological linkages
Recommended from our members
Simple method for sub-diffraction resolution imaging of cellular structures on standard confocal microscopes by three-photon absorption of quantum dots
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts
Protein expression from unintegrated HIV-1 DNA introduces bias in primary in vitro post-integration latency models
To understand the persistence of latently HIV-1 infected cells in virally suppressed infected patients, a number of in vitro models of HIV latency have been developed. In an attempt to mimic the in vivo situation as closely as possible, several models use primary cells and replication-competent viruses in combination with antiretroviral compounds to prevent ongoing replication. Latency is subsequently measured by HIV RNA and/or protein production after cellular activation. To discriminate between pre- and post-integration latency, integrase inhibitors are routinely used, preventing novel integrations upon cellular activation. Here, we show that this choice of antiretrovirals may still cause a bias of pre-integration latency in these models, as unintegrated HIV DNA can form and directly contribute to the levels of HIV RNA and protein production. We further show that the addition of reverse transcriptase inhibitors effectively suppresses the levels of episomal HIV DNA (as measured by 2-LTR circles) and decreases the levels of HIV transcription. Consequently, we show that latency levels described in models that only use integrase inhibitors may be overestimated. The inclusion of additional control conditions, such as 2-LTR quantification and the addition of reverse transcriptase inhibitors, is crucial to fully elucidate the actual levels of post-integration latency
- …
