40,558 research outputs found
Non-invasive evaluation of left ventricular afterload, part 2 : arterial pressure-flow and pressure-volume relations in humans
The mechanical load imposed by the systemic circulation to the left ventricle is an important determinant of normal and abnormal cardiovascular function. Left ventricular afterload is determined by complex time-varying phenomena, which affect pressure and flow patterns generated by the pumping ventricle. Left ventricular afterload is best described in terms of pressure-flow relations, allowing for quantification of various components of load using simplified biomechanical models of the circulation, with great potential for mechanistic understanding of the role of central hemodynamics in cardiovascular disease and the effects of therapeutic interventions. In the second part of this tutorial, we review analytic methods used to characterize left ventricular afterload, including analyses of central arterial pressure-flow relations and windkessel modeling (pressure-volume relations). Conceptual descriptions of various models and methods are emphasized over mathematical ones. Our review is aimed at helping researchers and clinicians obtain and interpret results from analyses of left ventricular afterload in clinical and epidemiological settings
Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart
Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis
A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes
In this paper we show and discuss the use of a versatile interaction
potential approach coupled with an immersed boundary method to simulate a
variety of flows involving deformable bodies. In particular, we focus on two
kinds of problems, namely (i) deformation of liquid-liquid interfaces and (ii)
flow in the left ventricle of the heart with either a mechanical or a natural
valve. Both examples have in common the two-way interaction of the flow with a
deformable interface or a membrane. The interaction potential approach (de
Tullio & Pascazio, Jou. Comp. Phys., 2016; Tanaka, Wada and Nakamura,
Computational Biomechanics, 2016) with minor modifications can be used to
capture the deformation dynamics in both classes of problems. We show that the
approach can be used to replicate the deformation dynamics of liquid-liquid
interfaces through the use of ad-hoc elastic constants. The results from our
simulations agree very well with previous studies on the deformation of drops
in standard flow configurations such as deforming drop in a shear flow or a
cross flow. We show that the same potential approach can also be used to study
the flow in the left ventricle of the heart. The flow imposed into the
ventricle interacts dynamically with the mitral valve (mechanical or natural)
and the ventricle which are simulated using the same model. Results from these
simulations are compared with ad- hoc in-house experimental measurements.
Finally, a parallelisation scheme is presented, as parallelisation is
unavoidable when studying large scale problems involving several thousands of
simultaneously deforming bodies on hundreds of distributed memory computing
processors
Fluid dynamics of aortic root dilation in Marfan syndrome
Aortic root dilation and propensity to dissection are typical manifestations
of the Marfan Syndrome (MS), a genetic defect leading to the degeneration of
the elastic fibres. Dilation affects the structure of the flow and, in turn,
altered flow may play a role in vessel dilation, generation of aneurysms, and
dissection. The aim of the present work is the investigation in-vitro of the
fluid dynamic modifications occurring as a consequence of the morphological
changes typically induced in the aortic root by MS. A mock-loop reproducing the
left ventricle outflow tract and the aortic root was used to measure time
resolved velocity maps on a longitudinal symmetry plane of the aortic root. Two
dilated model aortas, designed to resemble morphological characteristics
typically observed in MS patients, have been compared to a reference, healthy
geometry. The aortic model was designed to quantitatively reproduce the change
of aortic distensibility caused by MS. Results demonstrate that vorticity
released from the valve leaflets, and possibly accumulating in the root, plays
a fundamental role in redirecting the systolic jet issued from the aortic
valve. The altered systolic flow also determines a different residual flow
during the diastole.Comment: Accepted versio
Cardiovascular function and ballistocardiogram: a relationship interpreted via mathematical modeling
Objective: to develop quantitative methods for the clinical interpretation of
the ballistocardiogram (BCG). Methods: a closed-loop mathematical model of the
cardiovascular system is proposed to theoretically simulate the mechanisms
generating the BCG signal, which is then compared with the signal acquired via
accelerometry on a suspended bed. Results: simulated arterial pressure
waveforms and ventricular functions are in good qualitative and quantitative
agreement with those reported in the clinical literature. Simulated BCG signals
exhibit the typical I, J, K, L, M and N peaks and show good qualitative and
quantitative agreement with experimental measurements. Simulated BCG signals
associated with reduced contractility and increased stiffness of the left
ventricle exhibit different changes that are characteristic of the specific
pathological condition. Conclusion: the proposed closed-loop model captures the
predominant features of BCG signals and can predict pathological changes on the
basis of fundamental mechanisms in cardiovascular physiology. Significance:
this work provides a quantitative framework for the clinical interpretation of
BCG signals and the optimization of BCG sensing devices. The present study
considers an average human body and can potentially be extended to include
variability among individuals
Soluble ST2 levels and left ventricular structure and function in patients with metabolic syndrome
Background: A biomarker that is of great interest in relation to adverse cardiovascular events is soluble ST2 (sST2), a member of the interleukin family. Considering that metabolic syndrome (MetS) is accompanied by a proinflammatory state, we aimed to assess the relationship between sST2 and left ventricular (LV) structure and function in patients with MetS. Methods: A multicentric, cross-sectional study was conducted on180 MetS subjects with normal LV ejection fraction as determined by echocardiography. LV hypertrophy (LVH) was defined as an LV mass index greater than the gender-specific upper limit of normal as determined by echocardiography. LV diastolic dysfunction (DD) was assessed by pulse-wave and tissue Doppler imaging. sST2 was measured by using a quantitative monoclonal ELISA assay. Results: LV mass index (β=0.337, P<0 .001, linear regression) was independently associated with sST2 concentrations. Increased sST2 was associated with an increased likelihood of LVH [Exp (B)=2.20, P=0.048, logistic regression] and increased systolic blood pressure [Exp (B)=1.02, P=0.05, logistic regression]. Comparing mean sST2 concentrations (adjusted for age, body mass index, gender) between different LV remodeling patterns, we found the greatest sST2 level in the group with concentric hypertrophy. There were no differences in sST2 concentration between groups with and without LV DD. Conclusions: Increased sST2 concentration in patients with MetS was associated with a greater likelihood of exhibiting LVH. Our results suggest that inflammation could be one of the principal triggering mechanisms for LV remodeling in MetS
- …
