9,174 research outputs found

    Early changes in rat diaphragm biology with mechanical ventilation

    Get PDF
    To better characterize the effects of 24-hour mechanical ventilation on diaphragm, the expression of myogenic transcription factors, myosin heavy chains, and sarcoplasmic/endoplasmic reticulum calcium-ATPase pumps was examined in rats. In the diaphragm of mechanically ventilated animals, the mRNA of MyoD, myosin heavy chain-2a and -2b, and sarcoplasmic/endoplasmic reticulum calcium-ATPase-1a decreased, whereas myogenin mRNA increased. In the diaphragm of anesthetized and spontaneously breathing rats, only the mRNA of MyoD and myosin heavy chain-2a decreased. MyoD and myogenin protein expression followed the changes at the mRNA, whereas the myosin heavy chain isoforms did not change. Parallel experiments involving the gastrocnemius were performed to assess the relative contribution of muscle shortening versus immobilization-induced deconditioning on muscle regulatory factor expression. Passive shortening produced no additional effects compared with immobilization-induced deconditioning. The overall changes followed a remarkably similar pattern except for MyoD protein expression, which increased in the gastrocnemius and decreased in the diaphragm while its mRNA diminished in both muscles. The early alterations in the expression of muscle protein and regulatory factors may serve as underlying molecular basis for the impaired diaphragm function seen after 24 hours of mechanical ventilation. Whether immobilization-induced deconditioning and/or passive shortening play a role in these alterations could not be fully unraveled

    MCV/Q, Medical College of Virginia Quarterly, Vol. 15 No. 3

    Get PDF

    A Reinforcement Learning Approach to Weaning of Mechanical Ventilation in Intensive Care Units

    Full text link
    The management of invasive mechanical ventilation, and the regulation of sedation and analgesia during ventilation, constitutes a major part of the care of patients admitted to intensive care units. Both prolonged dependence on mechanical ventilation and premature extubation are associated with increased risk of complications and higher hospital costs, but clinical opinion on the best protocol for weaning patients off of a ventilator varies. This work aims to develop a decision support tool that uses available patient information to predict time-to-extubation readiness and to recommend a personalized regime of sedation dosage and ventilator support. To this end, we use off-policy reinforcement learning algorithms to determine the best action at a given patient state from sub-optimal historical ICU data. We compare treatment policies from fitted Q-iteration with extremely randomized trees and with feedforward neural networks, and demonstrate that the policies learnt show promise in recommending weaning protocols with improved outcomes, in terms of minimizing rates of reintubation and regulating physiological stability

    Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice.

    Get PDF
    BackgroundIschemia-reperfusion (I-R) injury is a sterile inflammatory process that is commonly associated with diverse clinical situations such as hemorrhage followed by resuscitation, transient embolic events, and organ transplantation. I-R injury can induce lung dysfunction whether the I-R occurs in the lung or in a remote organ. Recently, evidence has emerged that receptors and pathways of the innate immune system are involved in recognizing sterile inflammation and overlap considerably with those involved in the recognition of and response to pathogens.MethodsThe authors used a mouse surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. In addition, they mimicked nutritional I-R injury in vitro by transiently depriving cells of all nutrients.ResultsCompared with sham-operated mice, mice subjected to ventilated lung I-R injury had up-regulated lung expression of inflammatory mediator messenger RNA for interleukin-1β, interleukin-6, and chemokine (C-X-C motif) ligand-1 and -2, paralleled by histologic evidence of lung neutrophil recruitment and increased plasma concentrations of interleukin-1β, interleukin-6, and high-mobility group protein B1 proteins. This inflammatory response to I-R required toll-like receptor-4 (TLR4). In addition, the authors demonstrated in vitro cooperativity and cross-talk between human macrophages and endothelial cells, resulting in augmented inflammatory responses to I-R. Remarkably, the authors found that selective depletion of alveolar macrophages rendered mice resistant to ventilated lung I-R injury.ConclusionsThe data reveal that alveolar macrophages and the pattern recognition receptor toll-like receptor-4 are involved in the generation of the early inflammatory response to lung I-R injury

    Adaptive servo-ventilation for central sleep apnea in heart failure

    Get PDF
    Background Central sleep apnea is associated with poor prognosis and death in patients with heart failure. Adaptive servo-ventilation is a therapy that uses a noninvasive ventilator to treat central sleep apnea by delivering servo-controlled inspiratory pressure support on top of expiratory positive airway pressure. We investigated the effects of adaptive servo-ventilation in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea. Methods We randomly assigned 1325 patients with a left ventricular ejection fraction of 45% or less, an apnea–hypopnea index (AHI) of 15 or more events (occurrences of apnea or hypopnea) per hour, and a predominance of central events to receive guideline-based medical treatment with adaptive servo-ventilation or guideline-based medical treatment alone (control). The primary end point in the time-to-event analysis was the first event of death from any cause, lifesaving cardiovascular intervention (cardiac transplantation, implantation of a ventricular assist device, resuscitation after sudden cardiac arrest, or appropriate lifesaving shock), or unplanned hospitalization for worsening heart failure. Results In the adaptive servo-ventilation group, the mean AHI at 12 months was 6.6 events per hour. The incidence of the primary end point did not differ significantly between the adaptive servo-ventilation group and the control group (54.1% and 50.8%, respectively; hazard ratio, 1.13; 95% confidence interval [CI], 0.97 to 1.31; P=0.10). All-cause mortality and cardiovascular mortality were significantly higher in the adaptive servo-ventilation group than in the control group (hazard ratio for death from any cause, 1.28; 95% CI, 1.06 to 1.55; P=0.01; and hazard ratio for cardiovascular death, 1.34; 95% CI, 1.09 to 1.65; P=0.006). Conclusions Adaptive servo-ventilation had no significant effect on the primary end point in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea, but all-cause and cardiovascular mortality were both increased with this therapy. (Funded by ResMed and others; SERVE-HF ClinicalTrials.gov number, NCT00733343. opens in new tab.

    Discontinuous gas exchange in insects: Is it all in their heads?

    Get PDF
    Some insects display an intermittent pattern of gas exchange while at rest, often going hours between breaths. These discontinuous gas exchange cycles (DGCs) are known to have evolved independently within five insect orders, but their possible adaptive benefit and evolutionary origin remain an enigma. Current research is primarily concerned with testing three adaptive hypotheses: that DGCs originally evolved or are currently maintained to (1) limit respiratory water loss, (2) enhance gas exchange in subterranean environments, or (3) limit oxidative damage. These adaptive explanations fail to unite a range of apparently contradictory observations regarding the insects that display DGCs and the conditions under which they occur. Here we argue that DGCs are explained by circadian, developmental, or artificially induced reductions in brain activity. We conclude that this pattern results from the thoracic and abdominal ganglia regulating ventilation in the absence of control from higher neural centers, and it is indicative of a sleeplike state. © 2010 by The University of Chicago

    CONTROL OF END-TIDAL HALOTHANE CONCENTRATION: Part B: Verification in Dogs

    Get PDF
    Conventional anaesthetic techniques do not allow for the automatic control of end-tidal halothane concentration and, therefore, brain concentration cannot be predicted. In this study, eight dogs were ventilated with halothane in oxygen using a new closed-loop anaesthetic breathing system which provided a constant end-tidal concentration. During the first 60 min the end-tidal concentration was maintained at 0.87 vol% (1 MAC). Then followed 60 min of halothane wash-out and a further 120-min period of halothane at 1.74 vol% (2 MAC). Halothane concentrations were measured in the inspired and expired air, and in the arterial, cerebral venous and mixed venous blood. Haemodynamic and respiratory variables were measured. The system reached 95% of the target end-tidal concentration within 6 min without over-shooting. After 2 h of wash-in, significant gradients still persisted between end-tidal, arterial and cerebral venous blood concentrations. Measured uptake differed from theoretically calculated uptake by 18.3-57.6%, depending on the model used. Measured arterial and cerebral venous concentrations differed from theoretically calculated values by 7% and 17.5%, respectively. It was shown that the required end-tidal concentrations can be obtained rapidly and accurately, and that brain tissue concentrations can be predicted within certain limit
    corecore