22,210 research outputs found
Map++: A Crowd-sensing System for Automatic Map Semantics Identification
Digital maps have become a part of our daily life with a number of commercial
and free map services. These services have still a huge potential for
enhancement with rich semantic information to support a large class of mapping
applications. In this paper, we present Map++, a system that leverages standard
cell-phone sensors in a crowdsensing approach to automatically enrich digital
maps with different road semantics like tunnels, bumps, bridges, footbridges,
crosswalks, road capacity, among others. Our analysis shows that cell-phones
sensors with humans in vehicles or walking get affected by the different road
features, which can be mined to extend the features of both free and commercial
mapping services. We present the design and implementation of Map++ and
evaluate it in a large city. Our evaluation shows that we can detect the
different semantics accurately with at most 3% false positive rate and 6% false
negative rate for both vehicle and pedestrian-based features. Moreover, we show
that Map++ has a small energy footprint on the cell-phones, highlighting its
promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on
Sensing, Communication, and Networking (IEEE SECON 2014
Development of a measurement technique for high response acceleration system
The aim of the study is to develop a small system and high response acceleration system for forces measurement of rocket, cornering force and impulse of crash car and hypervelocity testing for space vehicle. The acceleration system is mounted on the front nose of pet rocket and accelerated to a speed up to 4G for the experiment. During the experiment, which will last approximately one minute, acceleration data for the rocket is recorded. Results show that rocket axial acceleration increases as axial force increases. The hypervelocity testing for space vehicle will be planed a wind tunnel experiment of ground tests performed in the HIEST high-enthalpy shock tunnel facility
Experimental aerodynamic characteristics of vehicles traveling in tubes
A simplified theoretical model for a vehicle traveling through an unvented tube under equilibrium incompressible conditions was used to guide the test program, reduce the data, and determine the self-consistency of the results. The results were then used to establish values for the arbitrary coefficients in the theoretical model. Substantial progress was made in understanding the aerodynamic characteristics of vehicles traveling in tubes as exemplified by the good agreement of the theoretical model predictions with the experimental data throughout the Reynolds number range (three orders of magnitude, up to that for an actual full-scale system) and the many geometric variables tested
A teleoperated unmanned rotorcraft flight test technique
NASA and the U.S. Army are jointly developing a teleoperated unmanned rotorcraft research platform at the National Aeronautics and Space Administration (NASA) Langley Research Center. This effort is intended to provide the rotorcraft research community an intermediate step between wind tunnel rotorcraft studies and full scale flight testing. The research vehicle is scaled such that it can be operated in the NASA Langley 14- by 22-Foot Subsonic Tunnel or be flown freely at an outside test range. This paper briefly describes the system's requirements and the techniques used to marry the various technologies present in the system to meet these requirements. The paper also discusses the status of the development effort
Evaluation of a computer-generated perspective tunnel display for flight path following
The display was evaluated by monitoring pilot performance in a fixed base simulator with the vehicle dynamics of a CH-47 tandem rotor helicopter. Superposition of the predicted future vehicle position on the tunnel image was also investigated to determine whether, and to what extent, it contributes to better system performance (the best predicted future vehicle position was sought). Three types of simulator experiments were conducted: following a desired trajectory in the presence of disturbances; entering the trajectory from a random position, outside the trajectory; detecting and correcting failures in automatic flight. The tunnel display with superimposed predictor/director symbols was shown to be a very successful combination, which outperformed the other two displays in all three experiments. A prediction time of 4 to 7 sec. was found to optimize trajectory tracking for the given vehicle dynamics and flight condition. Pilot acceptance of the tunnel plus predictor/director display was found to be favorable and the time the pilot needed for familiarization with the display was found to be relatively short
JPL's electric and hybrid vehicles project: Project activities and preliminary test results
Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences
Flight determination of the aerodynamic stability and control characteristics of the NASA SGS 1-36 sailplane in the conventional and deep stall angles-of-attack of between -5 and 75 degrees
The flight test procedure and the preliminary analysis of the results obtained from twenty manned flights of the SGS 1-36 in the high angles of attack Deep Stall region are discussed. A comparison of the flight determined stability and control derivatives, those of the wind tunnel, and the estimated aerodynamic data is also presented. Furthermore, deep stall dynamics response of the SGS 1-36 is discussed briefly to explain some of the unexpected flight observations
- …