81,297 research outputs found

    HispaVeg: a new online vegetation plot database for Spain

    Get PDF
    We describe a new online database, named HispaVeg, which currently holds data from 2663 vegetation plots of Spanish woodlands, scrublands and grasslands. Unlike other similar databases, a detailed description of the structure is stored with the floristic data of each plot (i.e., number and physiognomy of the vertical layers, cover values for each layer).Most of the vegetation plots are large rectangles (400 to 2000 square meters) with an average of 34 species per plot. The survey dates range from 1956 to present, with most of the records between 1964 and 1994. The elevation of the plots ranges from 0 to 2880, with most of the plots between 300 and 1500 m. HispaVeg is freely available to the scientific community. Users can query the online database, view printable reports for each plot and download spreadsheet-like raw data for subsets of vegetation plots

    GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto- coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems

    GrassPlot v. 2.00 : first update on the database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto-coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems

    MP 2012-01

    Get PDF
    In 1994 the University of Alaska Fairbanks, School of Natural Resources and Agricultural Sciences, Agricultural and Forestry Experiment Station began a project to establish permanent sample plots (PSP) throughout the forests of northern and southcentral Alaska. Objectives of the project are to establish and maintain a system of PSPs to monitor forest growth, yield, forest health, and ecological conditions/change (Malone et al., 2009). To date, 603 PSPs have been established on 201 sites throughout interior and southcentral Alaska. The PSPs are square and 0.1 acre in size and in clusters of three. PSPs are remeasured at a five-year interval. The number of plot remeasurements after establishment ranges from one to three times. A large amount of data is collected at each site at time of establishment and at subsequent remeasurements. Four databases contain all the data: tree measurement and characteristics, site description, regeneration, and vegetation data. Vegetation data collected on the 0.1 acre PSPs includes species (trees shrub, herb, grass, and non-vascular plants) and cover, an estimate of the amount of the plot covered by the crown of each species (cover class) (Daubenmire, 1959). The vegetation database can be used by land managers and researchers to study species diversity and forest succession in addition to long-term monitoring of forest health. The species listed in Appendix 1 and in the vegetation database are presented by categories: tree, shrub, herb, grass, rush, sedge, fern, club moss, lichen, moss, and liverwort

    Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Get PDF
    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation

    Species–area relationships in continuous vegetation : evidence from Palaearctic grasslands

    Get PDF
    Aim: Species-area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location: Palaearctic grasslands and other non-forested habitats. Taxa: Vascular plants, bryophytes and lichens. Methods: We used the GrassPlot database, containing standardised vegetation-plot data from vascular plants, bryophytes, and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2057 nested-plot series with at least seven grain sizes ranging from 1 cm2 to 1024 m². Using non-linear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis-Menten). Based on AICc, we tested whether the ranking of functions differed among taxa, methodological settings, biomes or vegetation types. Results: The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted-presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions: We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis-Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area

    On the trails of Josias Braun-Blanquet II : first results from the 12th EDGG Field Workshop studying the dry grasslands of the inneralpine dry valleys of Switzerland

    Get PDF
    The 12th EDGG Field Workshop took place from 11 to 19 May 2019, organised by the Vegetation Ecology Group of the Institute of Natural Resource Sciences (IUNR) of the Zurich University of Applied Sciences (ZHAW). Like in the 11th Field Workshop in Austria, the main target was the "Inneralpine Trockenvegetation" (Festuco-Brometea and Sedo-Scleranthetea), which was first extensively sampled by Josias Braun-Blanquet and collaborators during the 1950s. We visited the Rhône valley in the cantons of Vaud and Valais, one of the most ex-treme xerothermic islands of the Alps and the Rhine and Inn valleys in the canton of Grison. In total, 30 nested-plot series (EDGG biodi-versity plots) of 0.0001 to 100 m² and 82 plots of 10 m² were sampled in meso-xeric, xeric and rocky grasslands of 25 different sites, rang-ing from 500 to 1,656 m a.s.l., under different topographic, bedrock and landuse conditions. All vascular plants, bryophytes and lichens were recorded in each plot, along with their cover values. We found on average 28.9 vascular plants on 10 m²; which was the lowest mean species richness of any previous EDGG Field Workshop. These values are comparable to the average species richness values of dry grasslands of the Aosta valley in Italy. The data sampled will be used to understand the biodiversity patterns regionally and in the Palae-arctic context as well as to place the Swiss dry grasslands in the modern European syntaxonomic system

    SIVIM – das Online-Datenbank-System zur Vegetation der iberischen Halbinsel und der Makaronesischen Inseln

    Get PDF
    SIVIM (Sistema de Información de la Vegetación Ibérica y Macaronésica) is an information system designed for capturing, hosting, editing, analyzing and outputting georeferenced plot data of Iberian and Macaronesian vegetation. It currently hosts 86,000 relevés, mainly from the northern half of the Iberian Peninsula and the Balearic Islands, and will grow to 100,000 relevés in the near future. SIVIM has been conceived to offer direct and free on-line access to relevés, tables, as well as to floristic, syntaxonomical and bibliographical records. The system also offers on-line software for edition and analysis of vegetation data. The main characteristics of SIVIM are presented, and its particular technical solutions to typical data banking problems as well as its future objectives are briefly commented.SIVIM ist ein Informationssystem, mit welchem georeferenzierte Daten zur iberischen und makaronesischen Vegetation erfasst, gehostet, editiert, analysiert und ausgegeben werden können. Momentan umfasst das System 86.000 Aufnahmen. In naher Zukunft soll die Anzahl der Aufnahmen auf 100.000 steigen, hauptsächlich durch Daten aus dem Norden der Iberischen Halbinsel und von den Balearen. SIVIM wurde initiiert, um einen direkten, freien Online-Zugang zu Vegetationsaufnahmen, Vegetationstabellen, sowie zu floristischen, syntaxonomischen und bibliographischen Daten anzubieten. Außerdem bietet es Online-Software, um Vegetationsdaten zu editieren und zu analysieren. Dieser Beitrag gibt eine Übersicht über die wesentlichen Eigenschaften von SIVIM und erläutert die implementierten technischen Lösungen typischer Datenbankprobleme sowie die zukünftigen Ziele
    corecore