1,099,335 research outputs found

    Functions dividing their Hessian determinants and affine spheres

    Full text link
    The nonzero level sets of a homogeneous, logarithmically homogeneous, or translationally homogeneous function are affine spheres if and only if the Hessian determinant of the function is a multiple of a power or an exponential of the function. In particular, the nonzero level sets of a homogeneous polynomial are proper affine spheres if some power of it equals a nonzero multiple of its Hessian determinant. The relative invariants of real forms of regular irreducible prehomogeneous vector spaces yield many such polynomials which are moreover irreducible. For example, the nonzero level sets of the Cayley hyperdeterminant are affine spheres.Comment: v4 is greatly shortened with respect to v3. Some of the omitted material will be posted in a different articl

    Region of Attraction Estimation Using Invariant Sets and Rational Lyapunov Functions

    Full text link
    This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of nonlinear dynamical systems. The estimates we provide are given by positively invariant sets which are not necessarily defined by level sets of a Lyapunov function. Moreover, we present conditions for the existence of Lyapunov functions linked to the positively invariant set formulation we propose. Connections to fundamental results on estimates of the RA are presented and support the search of Lyapunov functions of a rational nature. We then restrict our attention to systems governed by polynomial vector fields and provide an algorithm that is guaranteed to enlarge the estimate of the RA at each iteration

    On the Gauss map of embedded minimal tubes

    Full text link
    A surface is called a tube if its level-sets with respect to some coordinate function (the axis of the surface) are compact. Any tube of zero mean curvature has an invariant, the so-called flow vector. We study how the geometry of the Gaussian image of a higher-dimensional minimal tube M is controlled by the angle alpha(M) between the axis and the flow vector of M. We prove that the diameter of the Gauss image of M is at least 2alpha(M). As a consequence we derive an estimate on the length of a two-dimensional minimal tube M in terms of alpha(\M) and the total Gaussian curvature of M

    Multivariate extremality measure

    Get PDF
    We propose a new multivariate order based on a concept that we will call extremality". Given a unit vector, the extremality allows to measure the "farness" of a point with respect to a data cloud or to a distribution in the vector direction. We establish the most relevant properties of this measure and provide the theoretical basis for its nonparametric estimation. We include two applications in Finance: a multivariate Value at Risk (VaR) with level sets constructed through extremality and a portfolio selection strategy based on the order induced by extremality.Extremality, Oriented cone, Value at risk, Portfolio selection

    Confidence sets in sparse regression

    Full text link
    The problem of constructing confidence sets in the high-dimensional linear model with nn response variables and pp parameters, possibly pnp\ge n, is considered. Full honest adaptive inference is possible if the rate of sparse estimation does not exceed n1/4n^{-1/4}, otherwise sparse adaptive confidence sets exist only over strict subsets of the parameter spaces for which sparse estimators exist. Necessary and sufficient conditions for the existence of confidence sets that adapt to a fixed sparsity level of the parameter vector are given in terms of minimal 2\ell^2-separation conditions on the parameter space. The design conditions cover common coherence assumptions used in models for sparsity, including (possibly correlated) sub-Gaussian designs.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1170 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Monte Carlo Confidence Sets for Identified Sets

    Get PDF
    In complicated/nonlinear parametric models, it is generally hard to know whether the model parameters are point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of full parameters and of subvectors in models defined through a likelihood or a vector of moment equalities or inequalities. These CSs are based on level sets of optimal sample criterion functions (such as likelihood or optimally-weighted or continuously-updated GMM criterions). The level sets are constructed using cutoffs that are computed via Monte Carlo (MC) simulations directly from the quasi-posterior distributions of the criterions. We establish new Bernstein-von Mises (or Bayesian Wilks) type theorems for the quasi-posterior distributions of the quasi-likelihood ratio (QLR) and profile QLR in partially-identified regular models and some non-regular models. These results imply that our MC CSs have exact asymptotic frequentist coverage for identified sets of full parameters and of subvectors in partially-identified regular models, and have valid but potentially conservative coverage in models with reduced-form parameters on the boundary. Our MC CSs for identified sets of subvectors are shown to have exact asymptotic coverage in models with singularities. We also provide results on uniform validity of our CSs over classes of DGPs that include point and partially identified models. We demonstrate good finite-sample coverage properties of our procedures in two simulation experiments. Finally, our procedures are applied to two non-trivial empirical examples: an airline entry game and a model of trade flows
    corecore