12,242 research outputs found

    A virulent strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission

    Get PDF
    This work was supported by the Biotechnology and Biological Sciences Research Council, the Department for Environment, Food and Rural Affairs, the Natural Environment Research Council, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative (grant #BBI0008281, http://www.bbsrc.ac.uk/pollinators) and by University of Warwick HEIF5 Proof of Concept funding to DJE.The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naive larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our understanding of this important viral pathogen of honeybees.Peer reviewe

    Towards integrated control of varroa: effect of variation in hygienic behaviour among honey bee colonies on mite population increase and deformed wing virus incidence

    Get PDF
    Hygienic behaviour in the honey bee, Apis mellifera, is the uncapping and removal of dead, diseased or infected brood from sealed cells by worker bees. We determined the effect of hygienic behaviour on varroa population growth and incidence of deformed wing virus (DWV), which can be transmitted by varroa. We treated 42 broodless honey bee colonies with oxalic acid in early January 2013 to reduce varroa populations to low levels, which we quantified by extracting mites from a sample of worker bees. We quantified varroa levels, again when the colonies were broodless, 48 weeks later. During the summer the hygienic behaviour in each colony was quantified four times using the Freeze Killed Brood (FKB) removal assay, and ranged from 27.5 % to 100 %. Varroa population increased greatly over the season, and there was a significant negative correlation between varroa increase and FKB removal. This was entirely due to fully hygienic colonies with >95 % FKB having only 43 % of the varroa build up of the less hygienic colonies.None of the 14 colonies with >80 % FKB removal had overt symptoms of DWV, whilst 36 % of the less hygienic colonies did. Higher levels of FKB removal also correlated significantly with lower numbers of DWV RNA copies in worker bees, but not in varroa mites. On average, fully hygienic colonies had c. 10,000 times less viral RNA than less hygienic colonies

    Results of international standardised beekeeper surveys of colony losses for winter 2012-2013 : analysis of winter loss rates and mixed effects modelling of risk factors for winter loss.

    Get PDF
    This article presents results of an analysis of winter losses of honey bee colonies from 19 mainly European countries, most of which implemented the standardised 2013 COLOSS questionnaire. Generalised linear mixed effects models (GLMMs) were used to investigate the effects of several factors on the risk of colony loss, including different treatments for Varroa destructor, allowing for random effects of beekeeper and region. Both winter and summer treatments were considered, and the most common combinations of treatment and timing were used to define treatment factor levels. Overall and within country colony loss rates are presented. Significant factors in the model were found to be: percentage of young queens in the colonies before winter, extent of queen problems in summer, treatment of the varroa mite, and access by foraging honey bees to oilseed rape and maize. Spatial variation at the beekeeper level is shown across geographical regions using random effects from the fitted models, both before and after allowing for the effect of the significant terms in the model. This spatial variation is considerable

    Infestation levels of Varroa destructor in local honey bees of Jordan

    Get PDF
    To determine Varroa mite infestation levels in Jordan, a survey covering 180 colonies of two bee types (Apis m. syriaca and Apis m. syriaca hybrids) from six locations of 4 climatic zones was conducted during August, 8 month after the last treatment. Sampled colonies had 8-10 frames covered with bees and 3-4 brood frames. Levels of infestation were determined on both adult worker bees and in sealed worker brood cells. Two-way ANOVA showed no significant differences due to bee type with average adult bee infestation of 10.9 % and 13.1 % on hybrid and local bee types, respectively. Average infestation levels in sealed brood worker cells were 37.6 % and 32.5 % in hybrid and local bee types, respectively. Differences in infestation levels on adult bees were significant due to location and ranged between 6.9 - 18.6 % in Daba’a (Desert climate) and Jerash (Dry Mediterranean), respectively. In sealed worker brood cells infestation levels ranged between 15.7 - 84.7 % in Baqa (Dry Mediterranean) and Jerash, respectively. This indicates clearly that the usual scheduled Varroa control practice by a single chemical treatment in autumn could be insufficient. Therefore, to prevent damages or even losses of colonies, including diagnosis of infestation rates as part of integrated Varroa management is highly recommended

    Error correction and diversity analysis of population mixtures determined by NGS

    Get PDF
    The impetus for this work was the need to analyse nucleotide diversity in a viral mix taken from honeybees. The paper has two findings. First, a method for correction of next generation sequencing error in the distribution of nucleotides at a site is developed. Second, a package of methods for assessment of nucleotide diversity is assembled. The error correction method is statistically based and works at the level of the nucleotide distribution rather than the level of individual nucleotides. The method relies on an error model and a sample of known viral genotypes that is used for model calibration. A compendium of existing and new diversity analysis tools is also presented, allowing hypotheses about diversity and mean diversity to be tested and associated confidence intervals to be calculated. The methods are illustrated using honeybee viral samples. Software in both Excel and Matlab and a guide are available at http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/,the Warwick University Systems Biology Centre software download site.Publisher PDFPeer reviewe

    Honey bee colony losses

    Get PDF
    No description supplie

    Assessing the role of the research in the transition to organic farming by using the Actor Network Theory: lessons from two case studies in France and Bulgaria

    Get PDF
    This paper explores the potential of Actor Network Theory (ANT) in understanding how the process of interaction and translation between human and non-human actors contribute to the development, adoption and diffusion of science-based innovations linked to the transition to organic farming. The study relies on two case studies, the French Camargue case covering a range of technical and social innovations, and the case from Bulgaria focusing on the development of a technical and product innovation, i.e. a veterinary product for organic beekeeping. The paper shows the limitations of classical approaches in studying innovations since they underestimate the role of heterogeneous actors, their status, and how they interact with each other. We argue that focusing on actors’ interactions helps to better understand the so-called “uncertainties” and “turning points” in the innovation development, as well as to interpret them as natural elements. Moreover we argue that challenges to tackle should be problematized to increase the success of research programs. We also stress the importance of opinion leaders during the implementation and diffusion phase of the innovation
    corecore