31,190 research outputs found

    The simultaneous effect of valproic acid and gamma radiation on telomerase activity and bax and Bcl-2 protein levels in MCF-7 breast cancer cell line

    Get PDF
    Background: Breast cancer is one of the most prevalent types of cancer. Factors such as ionizing radiation and chemotherapeutic agents can trigger apoptosis and cancer cell death. An anticonvulsant drug named Valproic acid is a histone deacetylase inhibitor that shows promising anti-tumor effects in a variety of cancers. Telomerase is a ribonucleoprotein enzyme that activated in cancer cells and lead to telomeres shortening inhibition and triggering the apoptosis. Objectives: The purpose of this research was to investigate the simultaneously effect of Valproic acid and gamma radiation on telomerase activity and bax and Bcl-2 protein level in MCF-7 breast cancer cell line. Materials and Methods: MCF-7 cells was treated with different dose of Valproic acid (0, 2, 8 and 16 mM/l) and single dose of gamma radiation (4 Gy/min. (cell toxicity was determined using neutral uptake test. Telomerase activity was determined using TRAP assay (PCR-ELISA) method. Bax and Bcl-2 protein level was determined by ELISA method, as well. Results: Combination of Valproic acid and gamma radiation increased significantly cell toxicity in a time and dose dependent manner compared with control (P < 0.0001). The ratio of Bax/Bcl-2 was increased in a dose dependent manner at 48 and 72 hour treatment (P < 0.0001). There was a decrease in Telomerase activity after 24, 48 and 72 hours treatment in a dose dependent manner (P < 0.0001). Conclusions: The increasing cell toxicity, apoptosis-inducing effects and decreasing telomerase activity may play an important role in the Valproic acid and radiation mechanism. The current survey suggested that it is likely beneficial to combine Valproic acid and gamma radiation to treat breast cancer. © 2015, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences

    Histone deacetylase inhibitors induce invasion of human melanoma cells in vitro via differential regulation of N-cadherin expression and RhoA activity

    Get PDF
    Background: Histone deacetylase inhibitors (HDACi) exert multiple cytotoxic actions on cancer cells. Currently, different synthetic HDACi are in clinical use or clinical trials; nevertheless, since both pro-invasive and anti-invasive activities have been described, there is some controversy about the effect of HDACi on melanoma cells. Methods: Matrigel and Collagen invasion assays were performed to evaluate the effect of several HDACi (Butyrate, Trichostatin A, Valproic acid and Vorinostat) on two human melanoma cell line invasion (A375 and HT-144). The expression of N- and E-Cadherin and the activity of the RhoA GTPase were analyzed to elucidate the mechanisms involved in the HDACi activity. Results: HDACi showed a pro-invasive effect on melanoma cells in vitro. This effect was accompanied by an up-regulation of N-cadherin expression and an inhibition of RhoA activity. Moreover, the down-regulation of N-cadherin through blocking antibodies or siRNA abrogated the pro-invasive effect of the HDACi and, additionally, the inhibition of the Rho/ROCK pathway led to an increase of melanoma cell invasion similar to that observed with the HDACi treatments. Conclusion: These results suggest a role of N-cadherin and RhoA in HDACi induced invasion and call into question the suitability of some HDACi as antitumor agents for melanoma patients

    New histone deacetylase inhibitors as potential therapeutic tools for advanced prostate carcinoma

    Get PDF
    The anti-epileptic drug valproic acid is also under trial as an anti-cancer agent due to its histone deacetylase (HDAC) inhibitory properties. However, the effects of valproic acid (VPA) are limited and concentrations required for exerting anti-neoplastic effects in vitro may not be reached in tumour patients. In this study, we tested in vitro and in vivo effects of two VPA-derivatives (ACS2, ACS33) on pre-clinical prostate cancer models. PC3 and DU-145 prostate tumour cell lines were treated with various concentrations of ACS2 or ACS33 to perform in vitro cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and to evaluate tumour cell adhesion to endothelial cell monolayers. Analysis of acetylated histones H3 and H4 protein expression was performed by western blotting. In vivo tumour growth was conducted in subcutaneous xenograft mouse models. Tumour sections were assessed by immunohistochemistry for histone H3 acetylation and proliferation. ACS2 and ACS33 significantly up-regulated histone H3 and H4 acetylation in prostate cancer cell lines. In micromolar concentrations both compounds exerted growth arrest in PC3 and DU-145 cells and prevented tumour cell attachment to endothelium. In vivo, ACS33 inhibited the growth of PC3 in subcutaneous xenografts. Immunohistochemistry and western blotting confirmed increased histone H3 acetylation and reduced proliferation. ACS2 and ACS33 represent novel VPA derivatives with superior anti-tumoural activities, compared to the mother compound. This investigation lends support to the clinical testing of ACS2 or ACS33 for the treatment of prostate cancer

    Induction of chronic migraine phenotypes in a rat model after environmental irritant exposure

    Get PDF
    Air pollution is linked to increased emergency department visits for headache and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well understood. We previously reported that chronic environmental irritant exposure sensitizes the trigeminovascular system response to nasal administration of environmental irritants. Here, we examine whether chronic environmental irritant exposure induces migraine behavioral phenotypes. Male rats were exposed to acrolein, a transient receptor potential channel ankyrin-1 (TRPA1) agonist, or room air by inhalation for 4 days before meningeal blood flow measurements, periorbital cutaneous sensory testing, or other behavioral testing. Touch-induced c-Fos expression in trigeminal nucleus caudalis was compared in animals exposed to room air or acrolein. Spontaneous behavior and olfactory discrimination was examined in open-field testing. Acrolein inhalation exposure produced long-lasting potentiation of blood flow responses to a subsequent TRPA1 agonist and sensitized cutaneous responses to mechanical stimulation. C-Fos expression in response to touch was increased in trigeminal nucleus caudalis in animals exposed to acrolein compared with room air. Spontaneous activity in an open-field and scent preference behavior was different in acrolein-exposed compared with room air-exposed animals. Sumatriptan, an acute migraine treatment blocked acute blood flow changes in response to TRPA1 or transient receptor potential vanilloid receptor-1 agonists. Pretreatment with valproic acid, a prophylactic migraine treatment, attenuated the enhanced blood flow responses observed after acrolein inhalation exposures. Environmental irritant exposure yields an animal model of chronic migraine in which to study mechanisms for enhanced headache susceptibility after chemical exposure

    HDAC inhibition is associated to valproic acid induction of early megakaryocytic markers

    Get PDF
    Valproic acid (VPA), a histone deacetylase inhibitor, causes differentiation in different cell lines and in a cell-specific manner; yet, its effect on megakaryocytic (MK) differentiation has not been studied. We evaluated whether VPA induces MK differentiation in a UT-7 cell line through histone acetylation in the GpIIIa gene region and activation of the ERK pathway. UT-7 cells, derived from megakaryoblastic leukemia, were treated with VPA at various concentrations, and the expression of differentiation markers as well as the gene expression profile was assessed. Flow cytometry, immunoblot analysis, and RT-PCR demonstrated that VPA induced the expression of the early MK markers GpIIIa (CD61) and GpIIb/IIIa (CD41) in a dose-dependent manner. The VPA-treated cells showed hyperacetylation of the histones H3 and H4; in particular, histone acetylation was found to have been associated with CD61 expression, in that the GpIIIa promoter showed H4 hyperacetylation, as demonstrated by the chromatin immunoprecipitation assay. Furthermore, activation of the ERK pathway was involved in VPA-mediated CD61/CD41 expression and in cell adhesion, as demonstrated by using the MEK/ERK inhibitor U0126. In conclusion, the capacity of VPA to commit UT-7 cells to MK differentiation is mediated by its inhibitory action on HDAC and the long-lived activation of ERK1/2
    corecore