4,371 research outputs found
Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray
The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception
Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice – Effects of peripheral axotomy or hindpaw inflammation
Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)1–VGLUT3 transcripts in lumbar 4–5 (L4–5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4–5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III–IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III–IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.Fil: Malet, Mariana. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vieytes, C. A.. Universidad Austral. Facultad de Ciencias Biomédicas; ArgentinaFil: Lundgren, K. H.. University of Cincinnati; Estados UnidosFil: Seal, R. P.. University of Pittsburgh; Estados UnidosFil: Tomasella, María Eugenia. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Seroogy, K. B.. University of Cincinnati; Estados UnidosFil: Hökfelt, T.. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G. F.. University of Pittsburgh; Estados UnidosFil: Brumovsky, Pablo Rodolfo. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Pittsburgh; Estados Unido
The organisation of spinoparabrachial neurons in the mouse
The anterolateral tract (ALT), which originates from neurons in lamina I and the deep dorsal horn, represents a major ascending output through which nociceptive information is transmitted to brain areas involved in pain perception. Although there is detailed quantitative information concerning the ALT in the rat, much less is known about this system in the mouse, which is increasingly being used for studies of spinal pain mechanisms because of the availability of genetically modified lines. The aim of this study was therefore to determine the extent to which information about the ALT in the rat can be extrapolated to the mouse. Our results suggest that as in the rat, most lamina I ALT projection neurons in the lumbar enlargement can be retrogradely labelled from the lateral parabrachial area, that the great majority of these cells (~90%) express the neurokinin 1 receptor (NK1r), and that these are larger than other NK1r-expressing neurons in this lamina. This means that many lamina I spinoparabrachial cells can be identified in NK1r-immunostained sections from animals that have not received retrograde tracer injections. However, we also observed certain species differences, in particular we found that many spinoparabrachial cells in lamina III-IV lack the NK1r, meaning that they cannot be identified based solely on expression of this receptor. We also provide evidence that the vast majority of spinoparabrachial cells are glutamatergic, and that some express substance P. These findings will be important for studies designed to unravel the complex neuronal circuitry that underlies spinal pain processing
Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus
The superficial dorsal horn (laminae I and II) of the spinal cord contains numerous excitatory and inhibitory interneurons, and recent studies have shown that each of these groups can be divided into several neurochemically distinct populations. Although it has long been known that some neurons in this region have intersegmental (propriospinal) axonal projections, there have been conflicting reports concerning the number of propriospinal cells and the extent of their axons. In addition, little is known about the neurochemical phenotype of propriospinal neurons or about the termination pattern of their axons. In the present study we show, using retrograde tracing, that around a third of lamina I–II neurons in the lumbar enlargement project at least five segments cranially. Substance P-expressing excitatory neurons are over-represented among these cells, accounting for one-third of the propriospinal neurons. In contrast, inhibitory interneurons and excitatory PKCγ neurons are both under-represented among the retrogradely labelled cells. By combining viral vector-mediated Cre-dependent anterograde tracing with immunocytochemistry, we provide evidence that the lateral spinal nucleus (LSN), rather than the superficial dorsal horn, is the main target for axons belonging to propriospinal substance P-expressing neurons. These findings help to resolve the discrepancies between earlier studies and have implications for the role of the LSN in pain mechanisms
The spino-bulbar-cerebellar pathway: organization and neurochemical properties of spinal cells that project to the lateral reticular nucleus in the rat
In addition to classical spinocerebellar pathways, the cerebellum receives information from the spinal cord indirectly via spino-bulbar-cerebellar systems. One of the structures in this pathway is the lateral reticular nucleus (LRt). We performed series of experiments to investigate the organization and neurotransmitter content of spinoreticular tract (SRT) neurons in the lumbar spinal cord that project to the LRt. Three rats received injections of the b subunit of Cholera toxin (CTb) or Fluorogold (FG) within the left and right LRt. The majority of SRT cells (56–61%) were found within the contralateral medial intermediate gray matter where small numbers (7–10%) of double-labeled cells were also present on both sides of the cord. Six rats received unilateral spinal injections of CTb to label spinal projections to the LRt. Injections of FG were made also into the anterior lobe of the cerebellum to label LRt pre-cerebellar neurons. Terminals were found mainly ipsilateral to spinal injection sites within the central and ventrolateral regions of the LRt. Immunocytochemical analysis of SRT terminals revealed that the majority (75%) were contained vesicular glutamate transporter 2 but a minority (20%) contained the vesicular GABA transporter. The inhibitory subpopulation was found to be GABAergic, glycinergic, or contained both transmitters. Inhibitory and excitatory terminals were present within overlapping regions of the nucleus. Most CTb terminals contacting LRt pre-cerebellar neurons were excitatory (80%) whereas a minority were inhibitory and most cells (88%) received contacts from both inhibitory and excitatory terminals. This study shows that SRT axons in the LRt have the capacity to exert direct excitatory and inhibitory actions on LRt pre-cerebellar neurons. Thus spinal cord input has the capacity to facilitate or depress the activity of individual LRt cells which in turn adjust activity in the cerebellum to produce coordinated motor behaviors
Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons
Large projection neurons in lamina III of the rat spinal cord that express the neurokinin 1 receptor are densely innervated by peptidergic primary afferent nociceptors and more sparsely by low-threshold myelinated afferents. However, we know little about their input from other glutamatergic neurons. Here we show that these cells receive numerous contacts from nonprimary boutons that express the vesicular glutamate transporter 2 (VGLUT2), and form asymmetrical synapses on their dendrites and cell bodies. These synapses are significantly smaller than those formed by peptidergic afferents, but provide a substantial proportion of the glutamatergic synapses that the cells receive (over a third of those in laminae I–II and half of those in deeper laminae). Surprisingly, although the dynorphin precursor preprodynorphin (PPD) was only present in 4–7% of VGLUT2 boutons in laminae I–IV, it was found in 58% of the VGLUT2 boutons that contacted these cells. This indicates a highly selective targeting of the lamina III projection cells by glutamatergic neurons that express PPD, and these are likely to correspond to local neurons (interneurons and possibly projection cells). Since many PPD-expressing dorsal horn neurons respond to noxious stimulation, this suggests that the lamina III projection cells receive powerful monosynaptic and polysynaptic nociceptive input. Excitatory interneurons in the dorsal horn have been shown to possess IA currents, which limit their excitability and can underlie a form of activity-dependent intrinsic plasticity. It is therefore likely that polysynaptic inputs to the lamina III projection neurons are recruited during the development of chronic pain states
Forebrain Origins of Glutamatergic Innervation to the Rat Paraventricular Nucleus of the Hypothalamus: Differential Inputs to the Anterior Versus Posterior Subregions
The hypothalamic paraventricular nucleus (PVN) regulates numerous homeostatic systems and functions largely under the influence of forebrain inputs. Glutamate is a major neurotransmitter in forebrain, and glutamate neurosignaling in the PVN is known to mediate many of its functions. Previous work showed that vesicular glutamate transporters (VGluTs; specific markers for glutamatergic neurons) are expressed in forebrain sites that project to the PVN; however, the extent of this presumed glutamatergic innervation to the PVN is not clear. In the present study retrograde FluoroGold (FG) labeling of PVN-projecting neurons was combined with in situ hybridization for VGluT1 and VGluT2 mRNAs to identify forebrain regions that provide glutamatergic innervation to the PVN and its immediate surround in rats, with special consideration for the sources to the anterior versus posterior PVN. VGluT1 mRNA colocalization with retrogradely labeled FG neurons was sparse. VGluT2 mRNA colocalization with FG neurons was most abundant in the ventromedial hypothalamus after anterior PVN FG injections, and in the lateral, posterior, dorsomedial, and ventromedial hypothalamic nuclei after posterior PVN injections. Anterograde tract tracing combined with VGluT2 immunolabeling showed that 1) ventromedial nucleus-derived glutamatergic inputs occur in both the anterior and posterior PVN; 2) posterior nucleus-derived glutamatergic inputs occur predominantly in the posterior PVN; and 3) medial preoptic nucleus-derived inputs to the PVN are not glutamatergic, thereby corroborating the innervation pattern seen with retrograde tracing. The results suggest that PVN subregions are influenced by varying amounts and sources of forebrain glutamatergic regulation, consistent with functional differentiation of glutamate projections. J. Comp. Neurol. 519:1301–1319, 2011. © 2010 Wiley-Liss, Inc
Corticospinal and reticulospinal contacts on cervical commissural and long descending propriospinal neurons in the adult rat spinal cord; evidence for powerful reticulospinal connections
Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input
Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn
Background:
Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter.<p></p>
Results:
GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region.<p></p>
Conclusions:
These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A
- …
