1,553,447 research outputs found

    User-Base Station Association in HetSNets: Complexity and Efficient Algorithms

    Get PDF
    This work considers the problem of user association to small-cell base stations (SBSs) in a heterogeneous and small-cell network (HetSNet). Two optimization problems are investigated, which are maximizing the set of associated users to the SBSs (the unweighted problem) and maximizing the set of weighted associated users to the SBSs (the weighted problem), under signal-to-interference-plus-noise ratio (SINR) constraints. Both problems are formulated as linear integer programs. The weighted problem is known to be NP-hard and, in this paper, the unweighted problem is proved to be NP-hard as well. Therefore, this paper develops two heuristic polynomial-time algorithms to solve both problems. The computational complexity of the proposed algorithms is evaluated and is shown to be far more efficient than the complexity of the optimal brute-force (BF) algorithm. Moreover, the paper benchmarks the performance of the proposed algorithms against the BF algorithm, the branch-and-bound (B\&B) algorithm and standard algorithms, through numerical simulations. The results demonstrate the close-to-optimal performance of the proposed algorithms. They also show that the weighted problem can be solved to provide solutions that are fair between users or to balance the load among SBSs

    Soft Handoff and Uplink Capacity in a Two-Tier CDMA System

    Full text link
    This paper examines the effect of soft handoff on the uplink user capacity of a CDMA system consisting of a single macrocell in which a single hotspot microcell is embedded. The users of these two base stations operate over the same frequency band. In the soft handoff scenario studied here, both macrocell and microcell base stations serve each system user and the two received copies of a desired user's signal are summed using maximal ratio combining. Exact and approximate analytical methods are developed to compute uplink user capacity. Simulation results demonstrate a 20% increase in user capacity compared to hard handoff. In addition, simple, approximate methods are presented for estimating soft handoff capacity and are shown to be quite accurate.Comment: To appear in IEEE Transactions on Wireless Communication
    corecore