418,418 research outputs found
Antibiotic prophylaxis during extracorporeal shock wave lithotripsy in the prevention of urinary tract infections in patients with sterile urine before the procedure
Introduction: There are controversies in the literature regarding the need and the duration of antibiotic prophylaxis in patients with extracorporeal shock wave lithotripsy (ESWL), who had a negative urine culture before the operation. This study was performed to evaluate the efficacy of the antibiotic prophylaxis in patients with proven sterile urine before they underwent ESWL. Materials and Methods: In this clinical trial, 150 patients with renal or urethral stones and sterile urine were examined for bacteriuria (positive urine culture) following ESWL. These patients were classified into 3 groups which received either a single dose of oral co-trimoxazole (Tab, 400/80 mg)- group A, a single dose of nitrofurantoin (Tab:100mg) -group B and no treatment- group C. Patients were followed with urine analysis and urine culture after two weeks. Results: The occurrence of post-ESWL urinary infections (positive urine culture) was 14% in group A, 10% in group B and 14% in group C. The complications among the groups were not statistically significant. Conclusion: The incidence of urinary tract infections after ESWL is extremely low, provided that in patients who had sterile urine before ESWL, prophylaxis antibiotics do not seem to be necessary
Urine Specimens from Pregnant and Nonpregnant Women Inhibitory to Amplification of \u3cem\u3eChlamydia trachomatis\u3c/em\u3e Nucleic Acid by PCR, Ligase Chain Reaction, and Transcription-Mediated Amplification: Identification of Urinary Substances Associated with Inhibition and Removal of Inhibitory Activity
The presence of endogenous amplification inhibitors in urine may produce false-negative results for the detection of Chlamydia trachomatis nucleic acids by tests such as PCR, ligase chain reaction (LCR), and transcription-mediated amplification (TMA). Consecutive urine specimens from 101 pregnant women and 287 nonpregnant women submitted for urinalysis were processed for C. trachomatis detection. Aliquots were spiked with the equivalent of one C. trachomatis elementary body and were tested by three commercial assays: AMPLICOR CT/NG, Chlamydia LCX, and Chlamydia TMA. The prevalence of inhibitors resulting in complete inhibition of amplification was 4.9% for PCR, 2.6% for LCR, and 7.5% for TMA. In addition, all three assays were partially inhibited by additional urine specimens. Only PCR was more often inhibited by urine from pregnant women than by urine from nonpregnant women (9.9 versus 3.1%; P = 0.011). A complete urinalysis including dipstick and a microscopic examination was performed. Logistic regression analysis revealed that the following substances were associated with amplification inhibition: beta-human chorionic gonadotropin (odd ratio [OR], 3.3) and crystals (OR, 3.3) for PCR, nitrites for LCR (OR, 14.4), and hemoglobin (OR, 3.3), nitrites (OR, 3.3), and crystals (OR, 3.3) for TMA. Aliquots of each inhibitory urine specimen were stored at 4 and -70°C and a dilution of 1:10 (84% for PCR, 100% for LCR, and 92% for TMA). Five urine specimens (three for PCR and two for TMA) required phenol-chloroform extraction to remove inhibitors. The results indicate that the prevalence of nucleic acid amplification inhibitors in female urine is different for each technology, that this prevalence may be predicted by the presence of urinary factors, and that storage and dilution remove most of the inhibitors
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
Sensitivity and specificity of detection methods for erythropoietin doping in cyclists
Recombinant human erythropoietin (rHuEPO) is used as doping a substance. Anti-doping efforts include urine and blood testing and monitoring the athlete biological passport (ABP). As data on the performance of these methods are incomplete, this study aimed to evaluate the performance of two common urine assays and the ABP. In a randomized, double-blinded, placebo-controlled trial, 48 trained cyclists received a mean dose of 6000 IU rHuEPO (epoetin beta) or placebo by weekly injection for eight weeks. Seven timed urine and blood samples were collected per subject. Urine samples were analyzed by sarcosyl-PAGE and isoelectric focusing methods in the accredited DoCoLab in Ghent. A selection of samples, including any with false presumptive findings, underwent a second sarcosyl-PAGE confirmation analysis. Hematological parameters were used to construct a module similar to the ABP and analyzed by two evaluators from an Athlete Passport Management Unit. Sensitivity of the sarcosyl-PAGE and isoelectric focusing assays for the detection of erythropoietin abuse were 63.8% and 58.6%, respectively, with a false presumptive finding rate of 4.3% and 6%. None of the false presumptive findings tested positive in the confirmation analysis. Sensitivity was highest between 2 and 6 days after dosing, and dropped rapidly outside this window. Sensitivity of the ABP was 91.3%. Specificity of the urine assays was high; however, the detection window of rHuEPO was narrow, leading to questionable sensitivity. The ABP, integrating longitudinal data, is more sensitive, but there are still subjects that evade detection. Combining these methods might improve performance, but will not resolve all observed shortcomings
OC-163 identification of inflammatory bowel disease (IBD) using field asymmetric ion mobility spectrometry (FAIMS)
Introduction Resident colonic bacteria, principally anaerobes and firmicutes, ferment undigested fibre. The resultant volatile organic compounds (VOCs) formed are dissolved in the faeces but also absorbed and excreted in the urine. We have previously shown that electronic nose (E-nose) analysis of urine VOCs distinguishes between Crohn's disease (CD), ulcerative colitis (UC) and healthy volunteers (HV): the underlying principle is pattern recognition of disease-specific “chemical fingerprint”. High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) offers a possible alternative. The underlying principle is separation of VOC chemical components based on their different ion mobilties in high electric fields. We performed a pilot study in the above groups, the patients in remission (Rem) or with active disease (AD), to assess if this technology could achieve separation between the groups. The results were validated against E-nose analysis.
Methods 59 subjects were studied; HV n=14, UC (Rem) n=18, UC (AD) n=4; CD (Rem) n=19, CD (AD) n=4. Urine samples (7 ml) in universal containers (25 ml) were heated to 40±0.1 C. The headspace (the air above the sample) was then analysed using FAIMS. The data were analysed by Fisher Discriminant Analysis.
Results The technique distinguished between the three groups. Additionally, patients with active disease could be distinguished from those in remission. These results were concordant with E-nose analysis.
Conclusion This pilot shows that urine VOCs, analysed by the different approaches of E-nose and FAIMS, the latter a novel application, can distinguish the healthy from those with UC and CD when disease is active or in remission. The two technologies together offer a non-invasive approach to diagnosis and follow-up in inflammatory bowel disease
The development of a method to determine felinine in body fluids by capillary electrophoresis : a thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Chemistry at Massey University
Ion-exchange, paper-chromatography and high performance liquid chromatography were used in earlier studies for the determination of felinine in biological fluids. These methods were either inadequate and/or need laborious sample pre-treatments. A new method for the determination of felinine by capillary zone electrophoresis has been developed. Preliminary investigations were carried out to address the conditions required for the separation of felinine. The separation of felinine can be performed on a fused-silica capillary with a 20 mM phosphate buffer (pH 2.0) and detection wavelength 200 nm. The separation principle was based on the different migration times due to the different molecular weights, molecular sizes and charges under an applied potential field. The quantitative determination of felinine levels in cat urine has been achieved. The cat urine analysis was performed directly on the capillary electrophoresis without making any felinine derivative(s). The levels of felinine in different cat genders are reported. The results were compared with the results of an HPLC felinine derivatization method. Felinine levels in entire male cat urine were much higher than those in female and castrated male cat urine. A synthetic felinine was employed as standard felinine. Linear relationships between peak area and concentration of synthetic felinine calibrations are reported. Mean felinine recovery in cat urine was 95.9%. Taurine, urea, creatine and creatinine, which exist in large amounts in cat urine, showed no interference with the analysis of felinine by this method. The new capillary zone electrophoresis method was then applied to the study of felinine stability. Conditions reported to influence the stability of felinine were investigated. These conditions included oxidation, storage temperatures and times, heating, acidic and alkaline solutions. Both synthetic felinine and felinine in cat urine were investigated. Storage temperature (-20°C to 20°C) had no significant influence on the stability of felinine while higher temperatures increased the decomposition of felinine. Felinine degraded at strong acid and base conditions but was relatively stable under mild acid and base conditions. A similar stability of felinine in human urine is also reported. The capillary zone electrophoresis method was also employed to study felinine in plasma and serum. Plasma and serum as well as urine can be analysed directly on the capillary electrophoresis after sufficient dilution. Conditions (eg. protein clean up, changing of injection time, 37°C heating) that might influence of felinine behaviour in plasma and serum are discussed. This study indicated that no traces felinine be found in cat plasma, within the detection limits of this new capillary electrophoresis method
BRAF V600E mutations in urine and plasma cell-free DNA from patients with Erdheim-Chester disease.
Erdheim-Chester disease (ECD) is a rare histiocytosis with a high prevalence of BRAF V600E mutation (>50% of patients). Patients with BRAF-mutant ECD can respond to BRAF inhibitors. Unfortunately, the lack of adequate archival tissue often precludes BRAF testing. We hypothesized that cell-free DNA (cfDNA) from plasma or urine can offer an alternative source of biologic material for testing. We tested for BRAF V600E mutation in cfDNA from the plasma and urine of 6 ECD patients. In patients with available archival tissue, the result of BRAF mutation analysis was concordant with plasma and urine cfDNA results in all 3 patients (100% agreement, kappa 1.00). In all 6 patients, BRAF mutation analysis of plasma and urine cfDNA was concordant in 5 of 6 patients (83% agreement, kappa 0.67). Testing for BRAF V600E mutation in plasma and urine cfDNA should be further investigated as an alternative to archival tissue mutation analysis
Daily Variability of Body Weight and Hydration Markers in Free Living Men and Women
Body weight and hydration markers change greatly during strenuous exercise, especially in the heat. However, in a non-athletic population, changes in body weight and hydration markers may not be so obvious. It is important to classify the normal fluctuation of these measurements for future studies in order to delineate when an intervention results in a change outside of what can be expected during normal daily living. PURPOSE: The purpose of this study was to describe the normal fluctuations in body weight and urine hydration markers over the course of 29 days. METHODS: One-hundred two male and female participants, ranging from 18 to 65 years were measured on 12 separate morning visits over the course of 29 days. All the subjects were apparently healthy and none of them exercised more than four hours per week. During each visit, subjects were weighed and provided a urine sample for analysis of osmolality (UOsmo) and specific gravity (USG) measurement. The results from these measurements were analyzed using a one-way, repeated measures, analysis of variance test to evaluate main effects of time on body weight, UOsmo, and USG. The coefficient of variance was also used to compare week to week values. RESULTS: Urine osmolality and USG showed no statistical significance across time. Mean average for urine osomolality was 582.27 278.23 with p = 0.056 and USG means were 1.015 0.008 with p = 0.239. Body weight did show change across time with a mean average of 76.25 16.91 with p = 0.005. CONCLUSION: Urine osmolality and USG biomarkers indicate stability over a period of 29 days, while body weight seems to be a more inconsistent factor
- …
