25,196 research outputs found
Phase Unwrapping and One-Dimensional Sign Problems
Sign problems in path integrals arise when different field configurations
contribute with different signs or phases. Phase unwrapping describes a family
of signal processing techniques in which phase differences between elements of
a time series are integrated to construct non-compact unwrapped phase
differences. By combining phase unwrapping with a cumulant expansion, path
integrals with sign problems arising from phase fluctuations can be
systematically approximated as linear combinations of path integrals without
sign problems. This work explores phase unwrapping in zero-plus-one-dimensional
complex scalar field theory. Results with improved signal-to-noise ratios for
the spectrum of scalar field theory can be obtained from unwrapped phases, but
the size of cumulant expansion truncation errors is found to be undesirably
sensitive to the parameters of the phase unwrapping algorithm employed. It is
argued that this numerical sensitivity arises from discretization artifacts
that become large when phases fluctuate close to singularities of a complex
logarithm in the definition of the unwrapped phase.Comment: 42 pages, 16 figures. Journal versio
Visualizing the Local Optical Response of Semiconducting Carbon Nanotubes to DNA-Wrapping
We studied the local optical response of semiconducting single-walled carbon nanotubes to wrapping by DNA segments using high resolution tip-enhanced near-field microscopy. Photoluminescence (PL) near-field images of single nanotubes reveal large DNA-wrapping-induced red shifts of the exciton energy that are two times higher than indicated by spatially averaging confocal microscopy. Near-field PL spectra taken along nanotubes feature two distinct PL bands resulting from DNA-wrapped and unwrapped nanotube segments. The transition between the two energy levels occurs on a length scale smaller than our spatial resolution of about 15 nm
Dynamical decompactification from brane gases in eleven-dimensional supergravity
Brane gas cosmology provides a dynamical decompactification mechanism that
could account for the number of spacetime dimensions we observe today. In this
work we discuss this scenario taking into account the full bosonic sector of
eleven-dimensional supergravity. We find new cosmological solutions that can
dynamically explain the existence of three large spatial dimensions
characterised by an universal asymptotic scaling behaviour and a large number
of initially unwrapped dimensions. This type of solutions enlarge the possible
initial conditions of the Universe in the Hagedorn phase and consequently can
potentially increase the probability of dynamical decompactification from
anisotropically wrapped backgrounds.Comment: 8 figures, JHEP3 styl
Unwrapping phase fluctuations in one dimension
Correlation functions in one-dimensional complex scalar field theory provide
a toy model for phase fluctuations, sign problems, and signal-to-noise problems
in lattice field theory. Phase unwrapping techniques from signal processing are
applied to lattice field theory in order to map compact random phases to
noncompact random variables that can be numerically sampled without sign or
signal-to-noise problems. A cumulant expansion can be used to reconstruct
average correlation functions from moments of unwrapped phases, but points
where the field magnitude fluctuates close to zero lead to ambiguities in the
definition of the unwrapped phase and significant noise at higher orders in the
cumulant expansion. Phase unwrapping algorithms that average fluctuations over
physical length scales improve, but do not completely resolve, these issues in
one dimension. Similar issues are seen in other applications of phase
unwrapping, where they are found to be more tractable in higher dimensions.Comment: 14 pages, 7 figures. arXiv admin note: text overlap with
arXiv:1806.0183
Resolving depth measurement ambiguity with commercially available range imaging cameras
Time-of-flight range imaging is typically performed with the amplitude modulated continuous wave method. This involves illuminating a scene with amplitude modulated light. Reflected light from the scene is received by the sensor with the range to the scene encoded as a phase delay of the modulation envelope. Due to the cyclic nature of phase, an ambiguity in the measured range occurs every half wavelength in distance, thereby limiting the maximum useable range of the camera.
This paper proposes a procedure to resolve depth ambiguity using software post processing. First, the range data is processed to segment the scene into separate objects. The average intensity of each object can then be used to determine which pixels are beyond the non-ambiguous range. The results demonstrate that depth ambiguity can be resolved for various scenes using only the available depth and intensity information. This proposed method reduces the sensitivity to objects with very high and very low reflectance, normally a key problem with basic threshold approaches.
This approach is very flexible as it can be used with any range imaging camera. Furthermore, capture time is not extended, keeping the artifacts caused by moving objects at a minimum. This makes it suitable for applications such as robot vision where the camera may be moving during captures.
The key limitation of the method is its inability to distinguish between two overlapping objects that are separated by a distance of exactly one non-ambiguous range. Overall the reliability of this method is higher than the basic threshold approach, but not as high as the multiple frequency method of resolving ambiguity
Laser-scanning techniques for rapid ballistics identification
Two different laser-scanning methods may be utilized. In each case scanned cylindrical bullet surface is displayed ""unwrapped'' on oscilloscope screen. Bullets are compared by photographing each display and superimposing negatives of two images. With some modifications bullets can be scanned and compared by superimposing images on screen of dual-beam oscilloscope
Minimizing the residual topography effect on interferograms to improve DInSAR results: estimating land subsidence in Port-Said City, Egypt
The accurate detection of land subsidence rates in urban areas is important to identify damage-prone areas and provide decision-makers with useful information. Meanwhile, no precise measurements of land subsidence have been undertaken within the coastal Port-Said City in Egypt to evaluate its hazard in relationship to sea-level rise. In order to address this shortcoming, this work introduces and evaluates a methodology that substantially improves small subsidence rate estimations in an urban setting. Eight ALOS/PALSAR-1 scenes were used to estimate the land subsidence rates in Port-Said City, using the Small BAse line Subset (SBAS) DInSAR technique. A stereo pair of ALOS/PRISM was used to generate an accurate DEM to minimize the residual topography effect on the generated interferograms. A total of 347 well distributed ground control points (GCP) were collected in Port-Said City using the leveling instrument to calibrate the generated DEM. Moreover, the eight PALSAR scenes were co-registered using 50 well-distributed GCPs and used to generate 22 interferogram pairs. These PALSAR interferograms were subsequently filtered and used together with the coherence data to calculate the phase unwrapping. The phase-unwrapped interferogram-pairs were then evaluated to discard four interferograms that were affected by phase jumps and phase ramps. Results confirmed that using an accurate DEM (ALOS/PRISM) was essential for accurately detecting small deformations. The vertical displacement rate during the investigated period (2007–2010) was estimated to be −28 mm. The results further indicate that the northern area of Port-Said City has been subjected to higher land subsidence rates compared to the southern area. Such land subsidence rates might induce significant environmental changes with respect to sea-level rise
- …
