235,165 research outputs found
Classification under Streaming Emerging New Classes: A Solution using Completely Random Trees
This paper investigates an important problem in stream mining, i.e.,
classification under streaming emerging new classes or SENC. The common
approach is to treat it as a classification problem and solve it using either a
supervised learner or a semi-supervised learner. We propose an alternative
approach by using unsupervised learning as the basis to solve this problem. The
SENC problem can be decomposed into three sub problems: detecting emerging new
classes, classifying for known classes, and updating models to enable
classification of instances of the new class and detection of more emerging new
classes. The proposed method employs completely random trees which have been
shown to work well in unsupervised learning and supervised learning
independently in the literature. This is the first time, as far as we know,
that completely random trees are used as a single common core to solve all
three sub problems: unsupervised learning, supervised learning and model update
in data streams. We show that the proposed unsupervised-learning-focused method
often achieves significantly better outcomes than existing
classification-focused methods
A Multiple Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps
A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote-sensing images. Such a system is able to face the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times in the considered area; ii) it is based on a partially unsupervised methodology capable to accomplish the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood classification approach and a non-parametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive sensors, SAR images, multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource data set confirm the effectiveness of the proposed system
Unsupervised two-class and multi-class support vector machines for abnormal traffic characterization
Although measurement-based real-time traffic classification has received considerable research attention, the timing constraints imposed by the high accuracy requirements and the learning phase of the algorithms employed still remain a challenge. In this paper we propose a measurement-based classification framework that exploits unsupervised learning to accurately categorise network anomalies to specific classes. We introduce the combinatorial use of two-class and multi-class unsupervised Support Vector Machines (SVM)s to first distinguish normal from anomalous traffic and to further classify the latter category to individual groups depending on the nature of the anomaly
A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images
A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade classifier approach and on a specific formulation of the expectation-maximization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified. The results of experiments carried out on a multitemporal data set confirm the validity of the proposed approach
- …
