71,162 research outputs found

    Foreword

    Get PDF
    This paper considers identification of unknown parameters in elastic dynamic models of industrial robots. Identifying such models is a challenging task since an industrial robot is a multivariable, nonlinear, resonant, and unstable system. Unknown parameters (mainly spring-damper pairs) in a physically parameterized nonlinear dynamic model are identified in the frequency domain, using estimates of the nonparametric frequency response function (FRF) in different robot configurations/positions. The nonlinear parametric robot model is linearized in the same positions and the optimal parameters are obtained by minimizing the discrepancy between the nonparametric FRFs and the parametric FRFs (the FRFs of the linearized parametric robot model). In order to accurately estimate the nonparametric FRFs, the experiments must be carefully designed. The selection of optimal robot configurations for the experiments is also part of the design. Different parameter estimators are compared and experimental results show the usefulness of the proposed identification procedure. The weighted logarithmic least squares estimator achieves the best result and the identified model gives a good global description of the dynamics in the frequency range of interest

    Secure Trajectory Planning Against Undetectable Spoofing Attacks

    Full text link
    This paper studies, for the first time, the trajectory planning problem in adversarial environments, where the objective is to design the trajectory of a robot to reach a desired final state despite the unknown and arbitrary action of an attacker. In particular, we consider a robot moving in a two-dimensional space and equipped with two sensors, namely, a Global Navigation Satellite System (GNSS) sensor and a Radio Signal Strength Indicator (RSSI) sensor. The attacker can arbitrarily spoof the readings of the GNSS sensor and the robot control input so as to maximally deviate his trajectory from the nominal precomputed path. We derive explicit and constructive conditions for the existence of undetectable attacks, through which the attacker deviates the robot trajectory in a stealthy way. Conversely, we characterize the existence of secure trajectories, which guarantee that the robot either moves along the nominal trajectory or that the attack remains detectable. We show that secure trajectories can only exist between a subset of states, and provide a numerical mechanism to compute them. We illustrate our findings through several numerical studies, and discuss that our methods are applicable to different models of robot dynamics, including unicycles. More generally, our results show how control design affects security in systems with nonlinear dynamics.Comment: Accepted for publication in Automatic

    A robust adaptive robot controller

    Get PDF
    A globally convergent adaptive control scheme for robot motion control with the following features is proposed. First, the adaptation law possesses enhanced robustness with respect to noisy velocity measurements. Second, the controller does not require the inclusion of high gain loops that may excite the unmodeled dynamics and amplify the noise level. Third, we derive for the unknown parameter design a relationship between compensator gains and closed-loop convergence rates that is independent of the robot task. A simulation example of a two-DOF manipulator featuring some aspects of the control scheme is give

    Safety Barrier Certificates for Heterogeneous Multi-Robot Systems

    Get PDF
    This paper presents a formal framework for collision avoidance in multi-robot systems, wherein an existing controller is modified in a minimally invasive fashion to ensure safety. We build this framework through the use of control barrier functions (CBFs) which guarantee forward invariance of a safe set; these yield safety barrier certificates in the context of heterogeneous robot dynamics subject to acceleration bounds. Moreover, safety barrier certificates are extended to a distributed control framework, wherein neighboring agent dynamics are unknown, through local parameter identification. The end result is an optimization-based controller that formally guarantees collision free behavior in heterogeneous multi-agent systems by minimally modifying the desired controller via safety barrier constraints. This formal result is verified in simulation on a multi-robot system consisting of both cumbersome and agile robots, is demonstrated experimentally on a system with a Magellan Pro robot and three Khepera III robots.Comment: 8 pages version of 2016ACC conference paper, experimental results adde

    Robust Satisfaction of Temporal Logic Specifications via Reinforcement Learning

    Full text link
    We consider the problem of steering a system with unknown, stochastic dynamics to satisfy a rich, temporally layered task given as a signal temporal logic formula. We represent the system as a Markov decision process in which the states are built from a partition of the state space and the transition probabilities are unknown. We present provably convergent reinforcement learning algorithms to maximize the probability of satisfying a given formula and to maximize the average expected robustness, i.e., a measure of how strongly the formula is satisfied. We demonstrate via a pair of robot navigation simulation case studies that reinforcement learning with robustness maximization performs better than probability maximization in terms of both probability of satisfaction and expected robustness.Comment: 8 pages, 4 figure

    Neural network control of a rehabilitation robot by state and output feedback

    Get PDF
    In this paper, neural network control is presented for a rehabilitation robot with unknown system dynamics. To deal with the system uncertainties and improve the system robustness, adaptive neural networks are used to approximate the unknown model of the robot and adapt interactions between the robot and the patient. Both full state feedback control and output feedback control are considered in this paper. With the proposed control, uniform ultimate boundedness of the closed loop system is achieved in the context of Lyapunov’s stability theory and its associated techniques. The state of the system is proven to converge to a small neighborhood of zero by appropriately choosing design parameters. Extensive simulations for a rehabilitation robot with constraints are carried out to illustrate the effectiveness of the proposed control

    Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics

    Full text link
    Recently several hierarchical inverse dynamics controllers based on cascades of quadratic programs have been proposed for application on torque controlled robots. They have important theoretical benefits but have never been implemented on a torque controlled robot where model inaccuracies and real-time computation requirements can be problematic. In this contribution we present an experimental evaluation of these algorithms in the context of balance control for a humanoid robot. The presented experiments demonstrate the applicability of the approach under real robot conditions (i.e. model uncertainty, estimation errors, etc). We propose a simplification of the optimization problem that allows us to decrease computation time enough to implement it in a fast torque control loop. We implement a momentum-based balance controller which shows robust performance in face of unknown disturbances, even when the robot is standing on only one foot. In a second experiment, a tracking task is evaluated to demonstrate the performance of the controller with more complicated hierarchies. Our results show that hierarchical inverse dynamics controllers can be used for feedback control of humanoid robots and that momentum-based balance control can be efficiently implemented on a real robot.Comment: appears in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201

    A Passivity-based Nonlinear Admittance Control with Application to Powered Upper-limb Control under Unknown Environmental Interactions

    Get PDF
    This paper presents an admittance controller based on the passivity theory for a powered upper-limb exoskeleton robot which is governed by the nonlinear equation of motion. Passivity allows us to include a human operator and environmental interaction in the control loop. The robot interacts with the human operator via F/T sensor and interacts with the environment mainly via end-effectors. Although the environmental interaction cannot be detected by any sensors (hence unknown), passivity allows us to have natural interaction. An analysis shows that the behavior of the actual system mimics that of a nominal model as the control gain goes to infinity, which implies that the proposed approach is an admittance controller. However, because the control gain cannot grow infinitely in practice, the performance limitation according to the achievable control gain is also analyzed. The result of this analysis indicates that the performance in the sense of infinite norm increases linearly with the control gain. In the experiments, the proposed properties were verified using 1 degree-of-freedom testbench, and an actual powered upper-limb exoskeleton was used to lift and maneuver the unknown payload.Comment: Accepted in IEEE/ASME Transactions on Mechatronics (T-MECH

    Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks

    Get PDF
    In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertaintiesFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin
    corecore