2,027 research outputs found

    Electronic states in heterostructures formed by ultranarrow layers

    Full text link
    Low-energy electronic states in heterosrtuctures formed by ultranarrow layer (single or several monolayers thickness) are studied theoretically. The host material is described within the effective mass approximation and effect of ultranarrow layers is taken into account within the framework of the transfer matrix approach. Using the current conservation requirement and the inversion symmetry of ultranarrow layer, the transfer matrix is written through two phenomenological parameters. The binding energy of localized state, the reflection (transmission) coefficient for the single ultranarrow layer case, and the energy spectrum of superlattice are determined by these parameters. Spectral dependency of absorption in superlattice due to photoexcitation of electrons from localized states into minibands is strongly dependent on the ultranarrow layers characteristics. Such a dependency can be used for verification of the transfer matrix parameters.Comment: 7 pages, 7 figure

    A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons

    Full text link
    Atomistic simulations were utilized to develop fundamental insights regarding the elongation process starting from ultranarrow graphene nanoribbons (GNRs) and resulting in monatomic carbon chains (MACCs). There are three key findings. First, we demonstrate that complete, elongated, and stable MACCs with fracture strains exceeding 100% can be formed from both ultranarrow armchair and zigzag GNRs. Second, we demonstrate that the deformation processes leading to the MACCs have strong chirality dependence. Specifically, armchair GNRs first form DNA-like chains, then develop into monatomic chains by passing through an intermediate configuration in which monatomic chain sections are separated by two-atom attachments. In contrast, zigzag GNRs form rope-ladder-like chains through a process in which the carbon hexagons are first elongated into rectangles; these rectangles eventually coalesce into monatomic chains through a novel triangle-pentagon deformation structure under further tensile deformation. Finally, we show that the width of GNRs plays an important role in the formation of MACCs, and that the ultranarrow GNRs facilitate the formation of full MACCs. The present work should be of considerable interest due to the experimentally demonstrated feasibility of using narrow GNRs to fabricate novel nanoelectronic components based upon monatomic chains of carbon atoms.Comment: 11 pages, 6 figures, Nanotechnology accepted versio

    Reflectionless Sharp Bends and Corners in Waveguides Using Epsilon-Near-Zero Effects

    Get PDF
    Following our recent theoretical and experimental results that show how zero-permittivity metamaterials may provide anomalous tunneling and energy squeezing through ultranarrow waveguide channels, here we report an experimental investigation of the bending features relative to this counterintuitive resonant effect. We generate the required effectively-zero permittivity using a waveguide operating at the cut-off of its dominant mode, and we show how sharp and narrow bends may be inserted within the propagation channel without causing any sensible reflection or loss.Comment: 13 pages, 6 figure

    Transmission-Line Analysis of Epsilon-Near-Zero (ENZ)-Filled Narrow Channels

    Get PDF
    Following our recent interest in metamaterial-based devices supporting resonant tunneling, energy squeezing and supercoupling through narrow waveguide channels and bends, here we analyze the fundamental physical mechanisms behind this phenomenon using a transmission-line model. These theoretical findings extend our theory, allowing us to take fully into account frequency dispersion and losses and revealing the substantial differences between this unique tunneling phenomenon and higher-frequency Fabry-Perot resonances. Moreover, they represent the foundations for other possibilities to realize tunneling through arbitrary waveguide bends, both in E and H planes of polarization, waveguide connections and sharp abruptions and to obtain analogous effects with geometries arguably simpler to realize.Comment: 35 pages, 9 figure

    A scalable quantum computer with an ultranarrow optical transition of ultracold neutral atoms in an optical lattice

    Full text link
    We propose a new quantum-computing scheme using ultracold neutral ytterbium atoms in an optical lattice. The nuclear Zeeman sublevels define a qubit. This choice avoids the natural phase evolution due to the magnetic dipole interaction between qubits. The Zeeman sublevels with large magnetic moments in the long-lived metastable state are also exploited to address individual atoms and to construct a controlled-multiqubit gate. Estimated parameters required for this scheme show that this proposal is scalable and experimentally feasible.Comment: 6 pages, 6 figure
    • …
    corecore