29,369 research outputs found
Ultrafast electron diffraction using an ultracold source
We present diffraction patterns from micron-sized areas of mono-crystalline
graphite obtained with an ultracold and ultrafast electron source. We show that
high spatial coherence is manifest in the visibility of the patterns even for
picosecond bunches of appreciable charge, enabled by the extremely low source
temperature (~ 10 K). For a larger, ~ 100 um spot size on the sample, spatial
coherence lengths > 10 nm result, sufficient to resolve diffraction patterns of
complex protein crystals. This makes the source ideal for ultrafast electron
diffraction of complex macromolecular structures such as membrane proteins, in
a regime unattainable by conventional photocathode sources. By further reducing
the source size, sub-um spot sizes on the sample become possible with spatial
coherence lengths exceeding 1 nm, enabling ultrafast nano-diffraction for
material science.Comment: 5 pages, 4 figure
Solving the Jitter Problem in Microwave Compressed Ultrafast Electron Diffraction Instruments: Robust Sub-50 fs Cavity-Laser Phase Stabilization
We demonstrate the compression of electron pulses in a high-brightness
ultrafast electron diffraction (UED) instrument using phase-locked microwave
signals directly generated from a mode-locked femtosecond oscillator.
Additionally, a continuous-wave phase stabilization system that accurately
corrects for phase fluctuations arising in the compression cavity from both
power amplification and thermal drift induced detuning was designed and
implemented. An improvement in the microwave timing stability from 100 fs to 5
fs RMS is measured electronically and the long-term arrival time stability
(10 hours) of the electron pulses improves to below our measurement
resolution of 50 fs. These results demonstrate sub-relativistic ultrafast
electron diffraction with compressed pulses that is no longer limited by
laser-microwave synchronization.Comment: Accepted for publication in Structural Dynamic
Four-dimensional ultrafast electron microscopy of phase transitions
Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space–charge effects. Here, we demonstrate the ability to obtain sequences of snapshots ("movies") with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal–insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves
Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy
The control of optically driven high-frequency strain waves in nanostructured
systems is an essential ingredient for the further development of
nanophononics. However, broadly applicable experimental means to quantitatively
map such structural distortion on their intrinsic ultrafast time and nanometer
length scales are still lacking. Here, we introduce ultrafast convergent beam
electron diffraction (U-CBED) with a nanoscale probe beam for the quantitative
retrieval of the time-dependent local distortion tensor. We demonstrate its
capabilities by investigating the ultrafast acoustic deformations close to the
edge of a single-crystalline graphite membrane. Tracking the structural
distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an
acoustic membrane breathing mode with spatially modulated amplitude, governed
by the optical near field structure at the membrane edge. Furthermore, an
in-plane polarized acoustic shock wave is launched at the membrane edge, which
triggers secondary acoustic shear waves with a pronounced spatio-temporal
dependency. The experimental findings are compared to numerical acoustic wave
simulations in the continuous medium limit, highlighting the importance of
microscopic dissipation mechanisms and ballistic transport channels
Scanning ultrafast electron microscopy
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability
Single-Shot Electron Diffraction using a Cold Atom Electron Source
Cold atom electron sources are a promising alternative to traditional
photocathode sources for use in ultrafast electron diffraction due to greatly
reduced electron temperature at creation, and the potential for a corresponding
increase in brightness. Here we demonstrate single-shot, nanosecond electron
diffraction from monocrystalline gold using cold electron bunches generated in
a cold atom electron source. The diffraction patterns have sufficient signal to
allow registration of multiple single-shot images, generating an averaged image
with significantly higher signal-to-noise ratio than obtained with unregistered
averaging. Reflection high-energy electron diffraction (RHEED) was also
demonstrated, showing that cold atom electron sources may be useful in
resolving nanosecond dynamics of nanometre scale near-surface structures.Comment: This is an author-created, un-copyedited version of an article
published in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from it. The Version of Record is
available online at http://dx.doi.org/10.1088/0953-4075/48/21/21400
Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface x-ray scattering
X-ray scattering is one of the primary tools to determine crystallographic
configuration with atomic accuracy. However, the measurement of ultrafast
structural dynamics in monolayer crystals remains a long-standing challenge due
to a significant reduction of diffraction volume and complexity of data
analysis, prohibiting the application of ultrafast x-ray scattering to study
nonequilibrium structural properties at the two-dimensional limit. Here, we
demonstrate femtosecond surface x-ray diffraction in combination with
crystallographic model-refinement calculations to quantify the ultrafast
structural dynamics of monolayer WSe crystals supported on a substrate. We
found the absorbed optical photon energy is preferably coupled to the in-plane
lattice vibrations within 2 picoseconds while the out-of-plane lattice
vibration amplitude remains unchanged during the first 10 picoseconds. The
model-assisted fitting suggests an asymmetric intralayer spacing change upon
excitation. The observed nonequilibrium anisotropic structural dynamics in
two-dimensional materials agrees with first-principles nonadiabatic modeling in
both real and momentum space, marking the distinct structural dynamics of
monolayer crystals from their bulk counterparts. The demonstrated methods
unlock the benefit of surface sensitive x-ray scattering to quantitatively
measure ultrafast structural dynamics in atomically thin materials and across
interfaces
Concept of a laser-plasma based electron source for sub-10 fs electron diffraction
We propose a new concept of an electron source for ultrafast electron
diffraction with sub-10~fs temporal resolution. Electrons are generated in a
laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV
energy with kHz repetition rate. The possibility of producing this electron
source is demonstrated using Particle-In-Cell simulations. We then use particle
tracking simulations to show that this electron beam can be transported and
manipulated in a realistic beamline, in order to reach parameters suitable for
electron diffraction. The beamline consists of realistic static magnetic optics
and introduces no temporal jitter. We demonstrate numerically that electron
bunches with 5~fs duration and containing 1.5~fC per bunch can be produced,
with a transverse coherence length exceeding 2~nm, as required for electron
diffraction
Optomechanical and Crystallization Phenomena Visualized with 4D Electron Microscopy: Interfacial Carbon Nanotubes on Silicon Nitride
With ultrafast electron microscopy (UEM), we report observation of the nanoscopic crystallization of amorphous silicon nitride, and the ultrashort optomechanical motion of the crystalline silicon nitride at the interface of an adhering carbon nanotube network. The in situ static crystallization of the silicon nitride occurs only in the presence of an adhering nanotube network, thus indicating their mediating role in reaching temperatures close to 1000 °C when exposed to a train of laser pulses. Under such condition, 4D visualization of the optomechanical motion of the specimen was followed by quantifying the change in diffraction contrast of crystalline silicon nitride, to which the nanotube network is bonded. The direction of the motion was established from a tilt series correlating the change in displacement with both the tilt angle and the response time. Correlation of nanoscopic motion with the picosecond atomic-scale dynamics suggests that electronic processes initiated in the nanotubes are responsible for the initial ultrafast optomechanical motion. The time scales accessible to UEM are 12 orders of magnitude shorter than those traditionally used to study the optomechanical motion of carbon nanotube networks, thus allowing for distinctions between the different electronic and thermal mechanisms to be made
- …
