211,869 research outputs found
Solution to the twin image problem in holography
While the invention of holography by Dennis Gabor truly constitutes an
ingenious concept, it has ever since been troubled by the so called twin image
problem limiting the information that can be obtained from a holographic
record. Due to symmetry reasons there are always two images appearing in the
reconstruction process. Thus, the reconstructed object is obscured by its
unwanted out of focus twin image. Especially for emission electron as well as
for x- and gamma-ray holography, where the source-object distances are small,
the reconstructed images of atoms are very close to their twin images from
which they can hardly be distinguished. In some particular instances only,
experimental efforts could remove the twin images. More recently, numerical
methods to diminish the effect of the twin image have been proposed but are
limited to purely absorbing objects failing to account for phase shifts caused
by the object. Here we show a universal method to reconstruct a hologram
completely free of twin images disturbance while no assumptions about the
object need to be imposed. Both, amplitude and true phase distributions are
retrieved without distortion
Twin-image noise reduction by phase retrieval in in-line digital holography
14 pagesInternational audienceIn-line digital holography conciles the applicative interest of a simple optical set-up with the speed, low cost and potential of digital reconstruction. We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin-image cannot be carried out as in off-axis holography. Applications in digital holography of particle fields greatly depend on its suppression to reach greater particle concentrations, keeping a sufficient signal to noise ratio in reconstructed images. We describe in this paper methods to improve numerically the reconstructed images by twin-image reduction. ©2005 COPYRIGHT SPI
Numerical suppression of the twin-image in in-line holography of a volume of micro-objects
This paper was published in Measurement Science and Technology and is made available as an electronic reprint with the permission of IOP. The paper can be found at the following URL on the IOP website: http://www.iop.org/EJ/journal/MSTInternational audienceWe address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin image cannot be carried out as in off-axis holography. A unifying description of existing digital suppression methods is given in the light of deconvolution techniques. Holograms of objects spread in 3D cannot be processed through available approaches. We suggest an iterative algorithm and demonstrate its efficacy on both simulated and real data. This method is suitable to enhance the reconstructed images from a digital hologram of small objects
Meissner response of a bulk superconductor with an embedded sheet of reduced penetration depth
We calculate the change in susceptibility resulting from a thin sheet with
reduced penetration depth embedded perpendicular to the surface of an isotropic
superconductor, in a geometry applicable to scanning Superconducting QUantum
Interference Device (SQUID) microscopy, by numerically solving Maxwell's and
London's equations using the finite element method. The predicted stripes in
susceptibility agree well in shape with the observations of Kalisky et al. of
enhanced susceptibility above twin planes in the underdoped pnictide
superconductor Ba(Fe1-xCox)2As2 (Ba-122). By comparing the predicted stripe
amplitudes with experiment and using the London relation between penetration
depth and superfluid density, we estimate the enhanced Cooper pair density on
the twin planes, and the barrier force for a vortex to cross a twin plane. Fits
to the observed temperature dependence of the stripe amplitude suggest that the
twin planes have a higher critical temperature than the bulk, although stripes
are not observed above the bulk critical temperature.Comment: 16 pages, 9 figure
- …
