344 research outputs found

    TERA- A Tool for Aero-engine Modelling and Management

    Get PDF
    One of the distinguishing features of the civil aero-engine market is its high competitiveness. The costs and risks associated with new projects are such that the difference between two apparently equally attractive options could result in success from one and a threat to the survival of the company from the other. To conceive and assess engines with minimum global warming impact and lowest cost of ownership in a variety of emission legislation scenarios, emissions taxation policies, fiscal and Air Traffic Management environments, a Techno-economic and Environmental Risk Assessment (TERA) model is needed. TERA incorporates multi-disciplinary modules for modelling gas turbine and aircraft performance, estimation of engine weight, noise and emissions as well as environment impact and operating economics. The TERA software is integrated with a commercial optimiser and provides a means for cycle studies. It is to be expected that new legislative and fiscal constraints on air travel will demand an extension to the customary range of asset management parameters. In such a business environment there is potential for TERA to develop into a useful tool for aircraft and engine asset management. This paper presents a description of this tool as well as gives some results from scenario studies

    Effect of steam addition on the flow field and NOx emissions for Jet-A in an aircraft combustor

    Get PDF
    The steam injection technology for aircraft engines is gaining rising importance because of the strong limitations imposed by the legislation for NOx reduction in airports. In order to investigate the impact of steam addition on combustion and NOx emissions, an integrated performance-CFD-chemical reactor network (CRN) methodology was developed. The CFD results showed steam addition reduced the high temperature size and the radical pool moved downstream. Then different post-processing techniques are employed and CRN is generated to predict NOx emissions. This network consists of 14 chemical reactor elements and the results were in close agreement with the ICAO databank. The established CRN model was then used for steam addition study and the results showed under air/steam mixture atmosphere, high steam content could push the NOx formation region to the post-flame zone and a large amount of the NOx emission could be reduced when the steam mass fraction is quite high

    Effect of steam addition on gas turbine combustor design and performance

    Get PDF
    Adding steam influences the combustion process inside the combustor, which should be taken into account during combustor design. The design of combustor has long been the most challenging process. This study integrated the gas turbine performance with the combustor design, and formulated a detailed procedure for single annular combustors with steam addition consideration in particular. To accomplish this, a computer code has been developed based on the design procedures. The design model could provide the combustor geometry and the combustor performance. The inlet parameters for combustor design are obtained and validated through the calculation of gas turbine engine performance provided by our own home code. The model predictions are compared with operational and configuration data from two real engines and show reasonably good accuracy. The influence of steam addition on combustor design is investigated and results showed the variation of geometrical size is highest for components where intense combustion takes place while the design is almost kept the same for components where only pure flow exists. After conforming the feasibility of the combustor design code, we investigated the effects of steam addition on combustor performance. It revealed that steam injection is an effective way to reduce the temperature in the burner while other performance like the total pressure loss would be slightly deteriorated

    An integrated methodology to assess the operational and environmental performance of a conceptual regenerative helicopter

    Get PDF
    This paper aims to present an integrated multidisciplinary simulation framework, deployed for the comprehensive assessment of combined helicopter powerplant systems at mission level. Analytical evaluations of existing and conceptual regenerative engine designs are carried out in terms of operational performance and environmental impact. The proposed methodology comprises a wide-range of individual modeling theories applicable to helicopter flight dynamics, gas turbine engine performance as well as a novel, physics-based, stirred reactor model for the rapid estimation of various helicopter emissions species. The overall methodology has been deployed to conduct a preliminary trade-off study for a reference simple cycle and conceptual regenerative twin-engine light helicopter, modeled after the Airbus Helicopters Bo105 configuration, simulated under the representative mission scenarios. Extensive comparisons are carried out and presented for the aforementioned helicopters at both engine and mission level, along with general flight performance charts including the payload-range diagram. The acquired results from the design trade-off study suggest that the conceptual regenerative helicopter can offer significant improvement in the payload-range capability, while simultaneously maintaining the required airworthiness requirements. Furthermore, it has been quantified through the implementation of a representative case study that, while the regenerative configuration can enhance the mission range and payload capabilities of the helicopter, it may have a detrimental effect on the mission emissions inventory, specifically for NOx (Nitrogen Oxides). This may impose a trade-off between the fuel economy and environmental performance of the helicopter. The proposed methodology can effectively be regarded as an enabling technology for the comprehensive assessment of conventional and conceptual helicopter powerplant systems, in terms of operational performance and environmental impact as well as towards the quantification of their associated trade-offs at mission level. Ali Fakhre, Ioannis Goulos, Vassilios Pachidis School of Engineering, Energy, Power and Propulsion Division, Cranfield University, Cranfield, Bedford, MK43 0AL, UK [email protected] The Aeronautical Journal, 2015, Vol 119, Issue 1211, pp1-24 Published by Cambridge University Press. This is the Author Accepted Manuscript. This article may be used for personal use only. The final published version (version of record) is available online at 10.1017/S0001924000010253. Please refer to any applicable publisher terms of use

    Decomposition of the Gender Wage Gap Using Matching: an Application for Switzerland

    Get PDF
    In this paper, we investigate the gender wage differentials for Switzerland. Using micro data from the Swiss Labour Force Survey, we apply a matching method to decompose the wage gap in Switzerland. Compared to the traditional Oaxaca-Blinder decomposition, this nonparametric technique does not require any estimation of wage equations and accounts for wage differences that can be due to differences in the support. Our estimation results show that the problem of gender differences in the supports matter in explaining wage differentials. We can interpret these differences as a form of “discrimination” which is reflected in wages because women face “barriers to the entry” in accessing certain individual characteristics that men achieve. As a consequence, accounting for these differences in gender supports may be useful in terms of policy implications in promoting more equality between men and women.discrimination, gender wage gap, matching

    Stability assessment of an airflow distorted military engine’s FAN

    Get PDF
    Military aircraft are often subjected to severe flight maneuvers with high angles of attack and angles of sideslip. These flight attitudes induce non-uniformity in flow conditions to their gas turbine engines, which may include distortion of inlet total pressure and total temperature at the aerodynamic interface plane. Operation of the downstream engine’s compression system may suffer reduced aerodynamic performance and stall margin, and increased blade stress levels. The present study presents a methodology of evaluating the effect of inlet flow distortion on the engine’s fan stability. The flow distortion examined was induced to the aerodynamic interface plane by means of changing the aircraft’s flight attitude. The study is based on the steady-state flow results from 27 different flight scenarios that have been simulated in computational fluid dynamics. As a baseline model geometry, an airframe inspired by the General Dynamics/LMAERO F-16 aircraft was chosen, which has been exposed to subsonic incoming airflow with varying direction resembling thus different aircraft flight attitudes. The results are focused on the total pressure distribution on the engine’s (aerodynamic interface plane) face and how this is manifested at the operation of the fan. Based on the results, it was concluded that the distorted conditions cause a shift of the surge line on the fan map, with the amount of shift to be directly related to the severity of these distorted conditions. The most severe flight attitude in terms of total pressure distortion, among the tested ones, caused about 7% surge margin depletion comparing to the undistorted value

    On the performance of simulation of inter-stage turbine reheat

    Get PDF
    Several authors have suggested the implementation of reheat in high By-Pass Ratio (BPR) aero engines, to improve engine performance. In contrast to military afterburning, civil aero engines would aim at reducing Specific Fuel Consumption (SFC) by introducing ‘Inter-stage Turbine Reheat’ (ITR). To maximise benefits, the second combustor should be placed at an early stage of the expansion process, e.g. between the first and second High-Pressure Turbine (HPT) stages. The aforementioned cycle design requires the accurate simulation of two or more turbine stages on the same shaft. The Design Point (DP) performance can be easily evaluated by defining a Turbine Work Split (TWS) ratio between the turbine stages. However, the performance simulation of Off-Design (OD) operating points requires the calculation of the TWS parameter for every OD step, by taking into account the thermodynamic behaviour of each turbine stage, represented by their respective maps. No analytical solution of the aforementioned problem is currently available in the public domain. This paper presents an analytical methodology by which ITR can be simulated at DP and OD. Results show excellent agreement with a commercial, closed-source performance code; discrepancies range from 0% to 3.48%, and are ascribed to the different gas models implemented in the codes

    Improved gas turbine diagnostics towards an integrated prognostic approach wiht vibration and gas path analysis

    Get PDF
    The degradation of a gas turbine engine in operation is inevitable, leading to losses in performance and eventually reduction in engine availability. Several methods like gas path analysis and vibration analysis have been developed to provide a means of identifying the onset of component degradation. Although both approaches have been applied individually with successes in identifying component faults; localizing complex faults and improving fault prediction confidence are some of the further benefits that can accrue from the integrated application of both techniques. Although, the link between gas path component faults and rotating mechanical component faults have been reported by several investigators, yet, gas path fault diagnostics and mechanical fault diagnostics are still treated as separated toolsets for gas turbine engine health monitoring. This research addresses this gap by laying a foundation for the integration of gas path analysis and vibration to monitor the effect of fouling in a gas turbine compressor. Previous work on the effect of compressor fouling on the gas turbine operation has been on estimating its impact on the gas turbine’s performance in terms of reduction in thermal efficiency and output power. Another methodology often used involves the determination of correlations to characterize the susceptibility and sensitivity of the gas turbine compressor to fouling. Although the above mentioned approaches are useful in determining the impact of compressor fouling on the gas turbine performance, they are limited in the sense that they are not capable of being used to access the interaction between the aerodynamic and rotordynamic domain in a fouled gas turbine compressor. In this work, a Greitzer-type compression system model is applied to predict the flow field dynamics of the fouled compressor. The Moore-Greitzer model is a lumped parameter model of a compressor operating between an inlet and exit ii duct which discharges to a plenum with a throttle to control the flow through the compression system. In a nutshell, the overall methodology applied in this work involves the interaction of four different models, which are: Moore-Greitzer compression system model, Al-Nahwi aerodynamic force model, 2D transfer matrix rotordynamic model and a gas turbine performance engine model. The study carried out in this work shows that as the rate of fouling increases, typified by a decrease in compressor massflow, isentropic efficiency and pressure ratio, there is a corresponding increase in the vibration amplitude at the compressor rotor first fundamental frequency. Also demonstrated in this work, is the application of a Moore-Greitzer type compressor model for the prediction of the inception of unstable operation in a compressor due to fouling. In modelling the interaction between the aerodynamic and rotordynamic domain in a fouled gas turbine compressor, linear simplifications have been adopted in the compression system model. A single term Fourier series has been used to approximate the resulting disturbed flow coefficient. This approximation is reasonable for weakly nonlinear systems such as compressor operating with either an incompressible inlet flow or low Mach number compressible inlet flow. To truly account for nonlinearity in the model, further recommendation for improvement includes using a second order or two-term Fourier series to approximate the disturbed flow coefficient. Further recommendation from this work include an extension of the rotordynamic analysis to include non-synchronous response of the rotor to an aerodynamic excitation and the application of the Greitzer type model for the prediction of the flow and pressure rise coefficient at the inlet of the compressor when fouled

    Impact of adverse environmental conditions on rotorcraft operational performance and pollutant emissions

    Get PDF
    It is anticipated that the contribution of rotorcraft activities to the environmental impact of civil aviation will increase in the future. Due to their versatility and robustness, helicopters are often operated in harsh environments with extreme ambient conditions. These severe conditions not only affect the performance of the engine but also affect the aerodynamics of the rotorcraft. This impact is reflected in the fuel burn and pollutants emitted by the rotorcraft during a mission. The aim of this paper is to introduce an exhaustive methodology to quantify the influence adverse environment conditions have in the mission fuel consumption and the associated emissions of nitrogen oxides (NOx). An emergency medical service (EMS) and a search and rescue (SAR) mission are used as case studies to simulate the effects of extreme temperatures, high altitude, and compressor degradation on a representative twin-engine medium (TEM) weight helicopter, the Sikorsky UH-60A Black Hawk. A simulation tool for helicopter mission performance analysis developed and validated at Cranfield University was employed. This software comprises different modules that enable the analysis of helicopter flight dynamics, powerplant performance, and exhaust emissions over a user-defined flight path profile. For the validation of the models implemented, extensive comparisons with experimental data are presented throughout for rotorcraft and engine performance as well as NOx emissions. Reductions as high as 12% and 40% in mission fuel and NOx emissions, respectively, were observed for the “high and cold” scenario simulated at the SAR role relative to the same mission trajectory under standard conditions
    corecore