38,054 research outputs found

    Concatenated Space Time Block Codes and TCM, Turbo TCM Convolutional as well as Turbo Codes

    No full text
    Space-time block codes provide substantial diversity advantages for multiple transmit antenna systems at a low decoding complexity. In this paper, we concatenate space-time codes with Convolutional Codes (CC), Turbo Convolutional codes (TC), Turbo BCH codes (TBCH), Trellis Coded Modulation (TCM) and Turbo Trellis Coded Modulation (TTCM) schemes for achieving a high coding gain. The associated performance and complexity of the coding schemes is compared

    On Maximum Contention-Free Interleavers and Permutation Polynomials over Integer Rings

    Full text link
    An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Contention-free interleavers have been recently shown to be suitable for parallel decoding of turbo codes. In this correspondence, it is shown that permutation polynomials generate maximum contention-free interleavers, i.e., every factor of the interleaver length becomes a possible degree of parallel processing of the decoder. Further, it is shown by computer simulations that turbo codes using these interleavers perform very well for the 3rd Generation Partnership Project (3GPP) standard.Comment: 13 pages, 2 figures, submitted as a correspondence to the IEEE Transactions on Information Theory, revised versio

    Concatenated Turbo/LDPC codes for deep space communications: performance and implementation

    Get PDF
    Deep space communications require error correction codes able to reach extremely low bit-error-rates, possibly with a steep waterfall region and without error floor. Several schemes have been proposed in the literature to achieve these goals. Most of them rely on the concatenation of different codes that leads to high hardware implementation complexity and poor resource sharing. This work proposes a scheme based on the concatenation of non-custom LDPC and turbo codes that achieves excellent error correction performance. Moreover, since both LDPC and turbo codes can be decoded with the BCJR algorithm, our preliminary results show that an efficient hardware architecture with high resource reuse can be designe

    Entanglement-assisted quantum turbo codes

    Get PDF
    An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin et al., in order to have the constituent decoders pass along only "extrinsic information" to each other rather than a posteriori probabilities as in the decoder of Poulin et al., and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.Comment: 31 pages, software for simulating EA turbo codes is available at http://code.google.com/p/ea-turbo/ and a presentation is available at http://markwilde.com/publications/10-10-EA-Turbo.ppt ; v2, revisions based on feedback from journal; v3, modification of the quantum turbo decoding algorithm that leads to improved performance over results in v2 and the results of Poulin et al. in arXiv:0712.288

    Information-Coupled Turbo Codes for LTE Systems

    Full text link
    We propose a new class of information-coupled (IC) Turbo codes to improve the transport block (TB) error rate performance for long-term evolution (LTE) systems, while keeping the hybrid automatic repeat request protocol and the Turbo decoder for each code block (CB) unchanged. In the proposed codes, every two consecutive CBs in a TB are coupled together by sharing a few common information bits. We propose a feed-forward and feed-back decoding scheme and a windowed (WD) decoding scheme for decoding the whole TB by exploiting the coupled information between CBs. Both decoding schemes achieve a considerable signal-to-noise-ratio (SNR) gain compared to the LTE Turbo codes. We construct the extrinsic information transfer (EXIT) functions for the LTE Turbo codes and our proposed IC Turbo codes from the EXIT functions of underlying convolutional codes. An SNR gain upper bound of our proposed codes over the LTE Turbo codes is derived and calculated by the constructed EXIT charts. Numerical results show that the proposed codes achieve an SNR gain of 0.25 dB to 0.72 dB for various code parameters at a TB error rate level of 10210^{-2}, which complies with the derived SNR gain upper bound.Comment: 13 pages, 12 figure

    Nested turbo codes for the costa problem

    Get PDF
    Driven by applications in data-hiding, MIMO broadcast channel coding, precoding for interference cancellation, and transmitter cooperation in wireless networks, Costa coding has lately become a very active research area. In this paper, we first offer code design guidelines in terms of source- channel coding for algebraic binning. We then address practical code design based on nested lattice codes and propose nested turbo codes using turbo-like trellis-coded quantization (TCQ) for source coding and turbo trellis-coded modulation (TTCM) for channel coding. Compared to TCQ, turbo-like TCQ offers structural similarity between the source and channel coding components, leading to more efficient nesting with TTCM and better source coding performance. Due to the difference in effective dimensionality between turbo-like TCQ and TTCM, there is a performance tradeoff between these two components when they are nested together, meaning that the performance of turbo-like TCQ worsens as the TTCM code becomes stronger and vice versa. Optimization of this performance tradeoff leads to our code design that outperforms existing TCQ/TCM and TCQ/TTCM constructions and exhibits a gap of 0.94, 1.42 and 2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 bits/sample, respectively

    Irregular Turbo Codes in Block-Fading Channels

    Full text link
    We study irregular binary turbo codes over non-ergodic block-fading channels. We first propose an extension of channel multiplexers initially designed for regular turbo codes. We then show that, using these multiplexers, irregular turbo codes that exhibit a small decoding threshold over the ergodic Gaussian-noise channel perform very close to the outage probability on block-fading channels, from both density evolution and finite-length perspectives.Comment: to be presented at the IEEE International Symposium on Information Theory, 201

    A Flexible LDPC/Turbo Decoder Architecture

    Get PDF
    Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP) algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or 450 Mbps Turbo decoding.NokiaNokia Siemens Networks (NSN)XilinxTexas InstrumentsNational Science Foundatio
    corecore