38,054 research outputs found
Concatenated Space Time Block Codes and TCM, Turbo TCM Convolutional as well as Turbo Codes
Space-time block codes provide substantial diversity advantages for multiple transmit antenna systems at a low decoding complexity. In this paper, we concatenate space-time codes with Convolutional Codes (CC), Turbo Convolutional codes (TC), Turbo BCH codes (TBCH), Trellis Coded Modulation (TCM) and Turbo Trellis Coded Modulation (TTCM) schemes for achieving a high coding gain. The associated performance and complexity of the coding schemes is compared
On Maximum Contention-Free Interleavers and Permutation Polynomials over Integer Rings
An interleaver is a critical component for the channel coding performance of
turbo codes. Algebraic constructions are of particular interest because they
admit analytical designs and simple, practical hardware implementation.
Contention-free interleavers have been recently shown to be suitable for
parallel decoding of turbo codes. In this correspondence, it is shown that
permutation polynomials generate maximum contention-free interleavers, i.e.,
every factor of the interleaver length becomes a possible degree of parallel
processing of the decoder. Further, it is shown by computer simulations that
turbo codes using these interleavers perform very well for the 3rd Generation
Partnership Project (3GPP) standard.Comment: 13 pages, 2 figures, submitted as a correspondence to the IEEE
Transactions on Information Theory, revised versio
Concatenated Turbo/LDPC codes for deep space communications: performance and implementation
Deep space communications require error correction codes able to reach extremely low bit-error-rates, possibly with a steep waterfall region and without error floor. Several schemes have been proposed in the literature to achieve these goals. Most of them rely on the concatenation of different codes that leads to high hardware implementation complexity and poor resource sharing. This work proposes a scheme based on the concatenation of non-custom LDPC and turbo codes that achieves excellent error correction performance. Moreover, since both LDPC and turbo codes can be decoded with the BCJR algorithm, our preliminary results show that an efficient hardware architecture with high resource reuse can be designe
Entanglement-assisted quantum turbo codes
An unexpected breakdown in the existing theory of quantum serial turbo coding
is that a quantum convolutional encoder cannot simultaneously be recursive and
non-catastrophic. These properties are essential for quantum turbo code
families to have a minimum distance growing with blocklength and for their
iterative decoding algorithm to converge, respectively. Here, we show that the
entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in
the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can
possess both of the aforementioned desirable properties. We give several
examples of EAQ convolutional encoders that are both recursive and
non-catastrophic and detail their relevant parameters. We then modify the
quantum turbo decoding algorithm of Poulin et al., in order to have the
constituent decoders pass along only "extrinsic information" to each other
rather than a posteriori probabilities as in the decoder of Poulin et al., and
this leads to a significant improvement in the performance of unassisted
quantum turbo codes. Other simulation results indicate that
entanglement-assisted turbo codes can operate reliably in a noise regime 4.73
dB beyond that of standard quantum turbo codes, when used on a memoryless
depolarizing channel. Furthermore, several of our quantum turbo codes are
within 1 dB or less of their hashing limits, so that the performance of quantum
turbo codes is now on par with that of classical turbo codes. Finally, we prove
that entanglement is the resource that enables a convolutional encoder to be
both non-catastrophic and recursive because an encoder acting on only
information qubits, classical bits, gauge qubits, and ancilla qubits cannot
simultaneously satisfy them.Comment: 31 pages, software for simulating EA turbo codes is available at
http://code.google.com/p/ea-turbo/ and a presentation is available at
http://markwilde.com/publications/10-10-EA-Turbo.ppt ; v2, revisions based on
feedback from journal; v3, modification of the quantum turbo decoding
algorithm that leads to improved performance over results in v2 and the
results of Poulin et al. in arXiv:0712.288
Information-Coupled Turbo Codes for LTE Systems
We propose a new class of information-coupled (IC) Turbo codes to improve the
transport block (TB) error rate performance for long-term evolution (LTE)
systems, while keeping the hybrid automatic repeat request protocol and the
Turbo decoder for each code block (CB) unchanged. In the proposed codes, every
two consecutive CBs in a TB are coupled together by sharing a few common
information bits. We propose a feed-forward and feed-back decoding scheme and a
windowed (WD) decoding scheme for decoding the whole TB by exploiting the
coupled information between CBs. Both decoding schemes achieve a considerable
signal-to-noise-ratio (SNR) gain compared to the LTE Turbo codes. We construct
the extrinsic information transfer (EXIT) functions for the LTE Turbo codes and
our proposed IC Turbo codes from the EXIT functions of underlying convolutional
codes. An SNR gain upper bound of our proposed codes over the LTE Turbo codes
is derived and calculated by the constructed EXIT charts. Numerical results
show that the proposed codes achieve an SNR gain of 0.25 dB to 0.72 dB for
various code parameters at a TB error rate level of , which complies
with the derived SNR gain upper bound.Comment: 13 pages, 12 figure
Nested turbo codes for the costa problem
Driven by applications in data-hiding, MIMO broadcast channel coding, precoding for interference cancellation, and transmitter cooperation in wireless networks, Costa coding has lately become a very active research area. In this paper, we first offer code design guidelines in terms of source- channel coding for algebraic binning. We then address practical code design based on nested lattice codes and propose nested turbo codes using turbo-like trellis-coded quantization (TCQ) for source coding and turbo trellis-coded modulation (TTCM) for channel coding. Compared to TCQ, turbo-like TCQ offers structural similarity between the source and channel coding components, leading to more efficient nesting with TTCM and better source coding performance. Due to the difference in effective dimensionality between turbo-like TCQ and TTCM, there is a performance tradeoff between these two components when they are nested together, meaning that the performance of turbo-like TCQ worsens as the TTCM code becomes stronger and vice versa. Optimization of this performance tradeoff leads to our code design that outperforms existing TCQ/TCM and TCQ/TTCM constructions and exhibits a gap of 0.94, 1.42 and 2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 bits/sample, respectively
Irregular Turbo Codes in Block-Fading Channels
We study irregular binary turbo codes over non-ergodic block-fading channels.
We first propose an extension of channel multiplexers initially designed for
regular turbo codes. We then show that, using these multiplexers, irregular
turbo codes that exhibit a small decoding threshold over the ergodic
Gaussian-noise channel perform very close to the outage probability on
block-fading channels, from both density evolution and finite-length
perspectives.Comment: to be presented at the IEEE International Symposium on Information
Theory, 201
A Flexible LDPC/Turbo Decoder Architecture
Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern
communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches
for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo
codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP)
algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler
trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo
codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to
support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a
flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or
450 Mbps Turbo decoding.NokiaNokia Siemens Networks (NSN)XilinxTexas InstrumentsNational Science Foundatio
- …
