352,943 research outputs found

    Microflow of fluorescently labelled red blood cells in tumours expressing single isoforms of VEGF and their response to VEGF-R tyrosine kinase inhibition

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.In this work we studied the functional differences between the microcirculation of murine tumours that only express single isoforms of vascular endothelial growth factor-A (VEGF), VEGF120 and VEGF188, and the effect of VEGF receptor tyrosine kinase (VEGF-R TK) inhibition on their functional response to the vascular disrupting agent, combretastatin A-4 phosphate (CA-4-P). We used measurement of fluorescentlylabelled red blood cell (RBC) velocities in tumour microvessels to study this functional response. RBC velocity for control VEGF120-expressing tumours was over 50% slower than for control VEGF188-expressing tumours, which may be due to the immature and haemorrhagic vasculature of the VEGF120 tumour. After chronic treatment with a VEGF-R tyrosine kinase inhibitor, SU5416, RBC velocities in VEGF120 tumours were significantly increased compared to control VEGF120 tumours, and similar to velocities in both VEGF188 treatment groups. Control and SU5416 treated VEGF188 tumours were not different from each other. Treatment of VEGF120 tumours with SU5416 reduced their vascular response to CA-4-P to a similar level to the VEGF188 tumours. Differential expression of VEGF isoforms not only affected vascular function in untreated tumours but also impacted on response to a vascular disrupting drug, CA-4-P, alone and in combination with an anti-angiogenic approach involving VEGF-R TK inhibition. Analysis of RBC velocities is a useful tool in measuring functional responses to vascular targeted treatments.This study is funded by the Cancer Research UK

    Divergent mutational processes distinguish hypoxic and normoxic tumours.

    Get PDF
    Many primary tumours have low levels of molecular oxygen (hypoxia), and hypoxic tumours respond poorly to therapy. Pan-cancer molecular hallmarks of tumour hypoxia remain poorly understood, with limited comprehension of its associations with specific mutational processes, non-coding driver genes and evolutionary features. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we quantify hypoxia in 1188 tumours spanning 27 cancer types. Elevated hypoxia associates with increased mutational load across cancer types, irrespective of underlying mutational class. The proportion of mutations attributed to several mutational signatures of unknown aetiology directly associates with the level of hypoxia, suggesting underlying mutational processes for these signatures. At the gene level, driver mutations in TP53, MYC and PTEN are enriched in hypoxic tumours, and mutations in PTEN interact with hypoxia to direct tumour evolutionary trajectories. Overall, hypoxia plays a critical role in shaping the genomic and evolutionary landscapes of cancer

    Molecular and cellular pathogenesis of adamantinomatous craniopharyngioma.

    Get PDF
    Adamantinomatous craniopharyngiomas (ACPs) are the most common pituitary tumours in children. Although histologically benign, these are clinically aggressive tumours, difficult to manage and associated with poor quality of life for the patients. Several human and mouse studies have provided unequivocal evidence that the over-activation of the WNT/β-catenin signalling pathway underlies the molecular aetiology of these tumours. Recently, research using genetically modified mouse models of human ACP have revealed a critical and unexpected non-cell autonomous role for pituitary stem cells in ACP tumourigenesis, which has expanded the cancer stem cell paradigm. As the result of this basic research, the pathogenesis of ACP is being unveiled, with promising implications for the development of novel treatments against these childhood neoplasms. These benign tumours may additionally represent a unique model to provide insights into the initial steps of oncogenesis

    NdYAG laser treatment of a glomus tympanicum tumour

    Get PDF
    Glomus tympanicum tumours are highly vascular tumours of the middle ear. Their removal by conventional surgical methods requires an extensive procedure in many cases, often with ossicular disarticulation to allow adequate exposure prior to the 'chaotic' and haemorrhagic event of tumour removal. This paper reports on the use of an NdYAG laser in a case of a large glomus tympanicum tumour. The laser facilitated a transcanal approach, avoided ossicular disarticulation and allowed accurate and almost bloodless ablation of the entire tumour.The NdYAG laser appears to be a very useful treatment modality in the management of these highly vascular tumours. Care should be taken to avoid accidental energy transmission to the cochlea

    Androgen receptor phosphorylation at serine 308 and serine 791 predicts enhanced survival in castrate resistant prostate cancer patients

    Get PDF
    We previously reported that AR phosphorylation at serine 213 was associated with poor outcome and may contribute to prostate cancer development and progression. This study investigates if specific AR phosphorylation sites have differing roles in the progression of hormone naïve prostate cancer (HNPC) to castrate resistant disease (CRPC). A panel of phosphospecific antibodies were employed to study AR phosphorylation in 84 matched HNPC and CRPC tumours. Immunohistochemistry measured Androgen receptor expression phosphorylated at serine residues 94 (pAR<sub>94</sub>), 308 (pAR<sub>308</sub>), 650(pAR<sub>650</sub>) and 791(pAR<sub>791</sub>). No correlations with clinical parameters were observed for pAR<sub>94</sub> or pAR<sub>650</sub> in HNPC or CRPC tumours. In contrast to our previous observation with serine 213, high pAR<sub>308</sub> is significantly associated with a longer time to disease specific death (p= 0.011) and high pAR<sub>791</sub> expression significantly associated with a longer time to disease recurrence (p= 0.018) in HNPC tumours and longer time to death from disease recurrence (p= 0.040) in CRPC tumours. This observation in CRPC tumours was attenuated in high apoptotic tumours (p= 0.022) and low proliferating tumours (p= 0.004). These results demonstrate that understanding the differing roles of AR phosphorylation is necessary before this can be exploited as a target for castrate resistant prostate cancer

    An evaluation of DNA-damage response and cell-cycle pathways for breast cancer classification

    Get PDF
    Accurate subtyping or classification of breast cancer is important for ensuring proper treatment of patients and also for understanding the molecular mechanisms driving this disease. While there have been several gene signatures proposed in the literature to classify breast tumours, these signatures show very low overlaps, different classification performance, and not much relevance to the underlying biology of these tumours. Here we evaluate DNA-damage response (DDR) and cell cycle pathways, which are critical pathways implicated in a considerable proportion of breast tumours, for their usefulness and ability in breast tumour subtyping. We think that subtyping breast tumours based on these two pathways could lead to vital insights into molecular mechanisms driving these tumours. Here, we performed a systematic evaluation of DDR and cell-cycle pathways for subtyping of breast tumours into the five known intrinsic subtypes. Homologous Recombination (HR) pathway showed the best performance in subtyping breast tumours, indicating that HR genes are strongly involved in all breast tumours. Comparisons of pathway based signatures and two standard gene signatures supported the use of known pathways for breast tumour subtyping. Further, the evaluation of these standard gene signatures showed that breast tumour subtyping, prognosis and survival estimation are all closely related. Finally, we constructed an all-inclusive super-signature by combining (union of) all genes and performing a stringent feature selection, and found it to be reasonably accurate and robust in classification as well as prognostic value. Adopting DDR and cell cycle pathways for breast tumour subtyping achieved robust and accurate breast tumour subtyping, and constructing a super-signature which contains feature selected mix of genes from these molecular pathways as well as clinical aspects is valuable in clinical practice.Comment: 28 pages, 7 figures, 6 table

    Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients.

    Get PDF
    BackgroundTopoisomerase I (TOPO1) and topoisomerase IIα (TOP2A) are specific targets of multiple chemotherapy drugs. Increased expression of TOPO1 protein and amplification of the TOP2A gene have been associated with treatment response in colorectal and breast cancers, respectively. TOPO1 and TOP2A may be potential therapeutic targets in other malignancies as well.Summary of methodsWe analysed TOPO1 protein expression and TOP2A gene amplification in patients (n = 24,262 specimens) with diverse cancers. Since HER2 and TOP2A co-amplification have been investigated for predictive value regarding anthracycline benefit, we analysed specimens for HER2 amplification as well.ResultsOverexpressed TOPO1 protein was present in 51% of the tumours. Four percent of the tumours had TOP2A amplification, with gallbladder tumours and gastroesophageal/oesophageal tumours having rates over 10%. Overall, 4903 specimens were assessed for both TOP2A and HER2 amplification; 129 (2.6%) had co-amplification. High rates (>40%) of HER2 amplification were seen in patients with TOP2A amplification in breast, ovarian, gastroesophageal/oesophageal and pancreatic cancer.ConclusionOur data indicate that increased TOPO1 expression and TOP2A amplification, as well as HER2 co-alterations, are present in multiple malignancies. The implications of these observations regarding sensitivity to chemotherapy not traditionally administered to these tumour types merits investigation
    corecore